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Preface

Classical multiple-view geometry studies the reconstruction of a static scene ob-
served by a rigidly moving camera. However, in many real-world applications
the scene may undergo much more complex dynamical changes. For instance,
the scene may consist of multiple moving objects (e.g., a traffic scene) or articu-
lated motions (e.g., a walking human) or even non-rigid dynamics (e.g., smoke,
fire, or a waterfall). In addition, some applications may require interaction with
the scene through a dynamical system (e.g., vision-guided robot navigation and
coordination).

To study the problem of reconstructing dynamical scenes, many new alge-
braic, geometric, statistical, and computational tools have recently emerged in
computer vision, computer graphics, image processing, and vision-based con-
trol. The goal of the International Workshop on Dynamical Vision (WDV) is to
converge different aspects of the research on dynamical vision and to identify
common mathematical problems, models, and methods for future research in
this emerging and active area.

This book reports 24 contributions presented at the First and Second Interna-
tional Workshops on Dynamical Vision, WDV 2005 and WDV 2006, which were
held in conjunction with the 10th International Conference on Computer Vision
(ICCV 2005) and the 9th European Conference on Computer Vision (ECCV
2006), respectively. These contributions were selected from over 52 submissions
through a rigorous double-blind review process by members of the Program
Committee. The book is structured in six parts, each containing three to five
contributions on six topics of dynamical vision: (1) motion segmentation and
estimation, (2) human motion analysis, tracking and recognition, (3) dynamic
textures, (4) motion tracking, (5) rigid and non-rigid motion analysis, and (6)
motion filtering and vision-based control.

The success of these workshops would not have been possible without the
outstanding quality of reviews by members of the Program Committee, the fi-
nancial support provided by several sponsors, and the technical support provided
by Avinash Ravichandran of The Johns Hopkins University.

October 2006 René Vidal
Anders Heyden

Yi Ma
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The Space of Multibody Fundamental Matrices:
Rank, Geometry and Projection

Xiaodong Fan1 and René Vidal2

1 Digital Media Division, Microsoft Corporate,
One Microsoft Way, Redmond, WA, 98052, USA

xiafan@microsoft.com
2 Center for Imaging Science, Department of BME, Johns Hopkins University,

308B Clark Hall, 3400 N. Charles St., Baltimore, MD, 21218, USA
rvidal@jhu.edu

Abstract. We study the rank and geometry of the multibody funda-
mental matrix, a geometric entity characterizing the two-view geometry
of dynamic scenes consisting of multiple rigid-body motions. We derive
an upper bound on the rank of the multibody fundamental matrix that
depends on the number of independent translations. We also derive an al-
gebraic characterization of the SVD of a multibody fundamental matrix
in the case of two or odd number of rigid-body motions with a common
rotation. This characterization allows us to project an arbitrary matrix
onto the space of multibody fundamental matrices using linear algebraic
techniques.

1 Introduction

Given two perspective views of a scene containing multiple rigidly moving ob-
jects, we consider the problem of estimating the motion of each object relative
to the camera, without knowing which measurements belong to which object.

When the scene is static, i.e., when either the camera or a single object move
rigidly, it is well-known [7] that if x1, x2 ∈ P

2 are two perspective images of a
point in 3-D space, then they must satisfy the epipolar constraint

x�
2 Fx1 = 0, (1)

where F ∈ R
3×3 is a rank-2 matrix called the fundamental matrix. The epipolar

constraint can be used to estimate F and the camera motion from a set of point
correspondences using linear techniques such as the eight-point algorithm. In the
case of a calibrated camera, it is also known that F factors as F = [T ]×R, where
[T ]× ∈ so(3) is a skew-symmetric matrix associated with the camera translation
T ∈ R

3 and R ∈ SO(3) is the camera rotation. The space so(3)×SO(3) is known
as the essential manifold and can be characterized as the space of matrices with
singular values {‖T ‖, ‖T ‖, 0}. Such a characterization is crucial when estimating
F from noisy correspondences, because it allows us to project a noisy linear
estimate of F onto a geometrically correct essential matrix.

R. Vidal, A. Heyden, and Y. Ma (Eds.): WDV 2005/2006, LNCS 4358, pp. 1–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 X. Fan and R. Vidal

The work of [14] proposes a generalization of the eight-point algorithm to the
more general and challenging case of dynamic scenes in which both the camera
and an unknown number of objects with unknown 3-D structure move indepen-
dently. The paper shows that applying a polynomial embedding to the image
points leads to the so-called multibody epipolar constraint and its associated
multibody fundamental matrix F . The method computes the number of motions
from a rank constraint on the image measurements, estimates the multibody fun-
damental matrix using least squares, and the individual fundamental matrices
using multivariate polynomial factorization or differentiation.

Unfortunately, the method is not yet reliable in the presence of noise, because
of the following reasons:

1. The polynomial embedding is not invariant with respect to rotations or trans-
lations of the image data, which makes it difficult to characterize the space of
multibody fundamental matrices. Such a characterization is crucial for im-
proving the performance of linear algorithms in the presence of noisy data.

2. The multibody fundamental matrix F is computed linearly, without taking
into account nonlinear constraints dictated by its rank and geometry. There-
fore, the estimate of F may not be geometrically correct in the presence of
noise, meaning that it may not perfectly factor into the multiple fundamental
matrices associated with each one of the rigid-body motions.

In this paper, we show how to overcome these difficulties by exploiting the
rank and geometry of the multibody fundamental matrix. More specifically,

1. Rank: we show that the rank of F depends on the number of independent
translational motions and on the number of times they are repeated. Our
results complete the analysis in [14], which deals with the particular case of
one repeated translational motion.

2. Geometry: we show that in the case of n rigid-body motions with common
rotation, F factors as the product of a symmetric (n even) or skew-symmetric
(n odd) matrix times a rotation matrix. When the number of motions is two
or odd, this leads to a characterization of the SVD of F . This characteriza-
tion is possible thanks to a slightly new definition of the polynomial embed-
ding that makes the singular values of the multibody fundamental matrix
invariant with respect to rotations of the image data.

3. Projection: we show that the characterization of the SVD of F can be
used to project an arbitrary matrix estimated from noisy correspondences
onto the space of multibody fundamental matrices using linear algebraic
techniques.

To the best of our knowledge, there is no prior work studying the geome-
try and projection onto the space of multibody fundamental matrices. In fact,
finding a linear algebraic characterization of this space is an extremely chal-
lenging problem. Therefore, although the case of two or odd number of motions
with common rotations may appear to be restrictive, we believe this case is an
important step toward solving the general case.
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The Space of Multibody Fundamental Matrices 3

Previous work. Most prior work on dynamic scene reconstruction proceeds
by first segmenting image measurements into various motion models, and then
estimating a single motion model for each group of measurements, or else in an
iterative manner with the aid of the EM algorithm. The number of models can
also be estimated in a probabilistic framework using model selection techniques
such as [10,6]. However, the convergence of iterative/probabilistic methods to
the global optimum depends strongly on correct initialization [10,9]. This has
motivated the recent development of geometric approaches to dynamic scene
reconstruction which do not require initialization. Algebraic approaches include
methods for multiple moving objects seen by an orthographic camera [1,5,17,11],
self-calibration from multiple motions [2], multiple points moving in planes [8],
segmentation of two [16] and multiple [14,15] rigid-body motions from two or
three [4] perspective views.

2 Multibody Epipolar Geometry

Given a set of point correspondences {(xj
1, x

j
2)}N

j=1 generated from n indepen-
dently and rigidly moving objects, our goal is to estimate their associated fun-
damental matrices {Fi}n

i=1 and the object to which each image pair belongs.
To this end, let (x1, x2) be an arbitrary image pair associated with any of

the n moving objects. Then, there exists a fundamental matrix Fi ∈ R
3×3 such

that the epipolar constraint x�
2 Fix1 = 0 is satisfied. Therefore, regardless of the

object associated with the image pair, the following multibody epipolar constraint
[14] must be satisfied by the fundamental matrices {Fi}n

i=1 and the image pair
(x1, x2)

MEC(x1, x2)
.=

n∏
i=1

(
x�

2 Fix1
)

= 0. (2)

The multibody epipolar constraint (MEC) is a homogeneous polynomial of
degree n in each of x1 or x2. Therefore, if we let x1 = [x1, y1, z1]�, equation (2)
viewed as a function of x1 can be written as a linear combination of the following
Mn

.= (n + 1)(n + 2)/2 independent monomials {xn
1 , xn−1

1 y1, x
n−1
1 z1, . . . , z

n
1 }.

After collecting all these monomials into a vector

νn(x1) = [. . . , γn1,n2,n3x
n1
1 yn2

1 zn3
1 , . . .]� ∈ R

Mn , (3)

where γn1,n2,n3 =
√

n!
n1!n2!n3!

with 0 ≤ n1, n2, n3 ≤ n, n1 + n2 + n3 = n, the
MEC can be written as the following a bilinear expression in νn(x1) and νn(x2)
(see [14]):

νn(x2)�Fνn(x1) = 0. (4)

The matrix F ∈ R
Mn×Mn is called the multibody fundamental matrix, and is

a natural generalization of the fundamental matrix F ∈ R
3×3 to the case of n

moving objects. The embedding νn : R
3 → R

Mn is known in algebraic geometry
as the Veronese map of degree n [3].
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4 X. Fan and R. Vidal

Remark 1 (Rotation invariant). Notice that our definition of the Veronese map
is slightly different from the one in [14], as we deliberately multiply the monomial
xn1

1 yn2
1 zn3

1 by the coefficient γn1,n2,n3 . As we will show in Theorem 2, this new
definition of the Veronese map makes it rotation invariant, a property that will
be shown to be crucial for characterizing the space of multibody fundamental
matrices.

Thanks to the Veronese map, we can write the epipolar constraint for all N point
correspondences as

V nf
.=
[
νn(x1

2)⊗νn(x1
1) · · · νn(xN

2 )⊗νn(xN
1 )

]�
f =0, (5)

where f ∈ R
M2

n is the stack of the rows of F and ⊗ represents the Kronecker
product. Given F , which can be computed as the least squares solution of (5),
the individual fundamental matrices {Fi}n

i=1 are obtained by factorizing the
bi-homogeneous polynomial

νn(x2)�Fνn(x1) =
n∏

i=1

(
x�

2 Fix1
)

= 0. (6)

into a product of bilinear forms [14], or from the second order derivatives of the
MEC [12].

Notice that the multibody fundamental matrix F is determined by the fun-
damental matrices of the individual rigid motions {Fi}n

i=1. Since these funda-
mental matrices are of rank two and/or belong to the essential manifold, the
multibody fundamental matrix is not an arbitrary matrix in R

Mn×Mn , but must
satisfy some nonlinear constraints, such as rank constraints and/or geometric
constraints. Such constraints are clearly not exploited by the linear algorithm of
[14]. Therefore, the linear estimate of the multibody fundamental matrix may
not be geometrically correct in the presence of noise, meaning that its associated
MEC may not perfectly factor as a product of epipolar constraints.

Such problems motivate our development in the rest of this paper.

3 Rank of the Multibody Fundamental Matrix

It is well-known [7] that the rank of a fundamental matrix F is two. The vector
e in its left null space is called the epipole and satisfies the following relationship
e�F = 0.

In the case of n rigid-body motions, there exist n epipoles {ei}n
i=1 such that

e�
i Fi = 0. This implies that(

e�
i F1x

) (
e�

i F2x
)
· · ·

(
e�

i Fnx
)

= νn(ei)�Fνn(x) = 0, (7)

for all x ∈ P
2. Since the vector νn(x) spans all of R

Mn when x ranges over P
2,1

we immediately have [14]

νn(ei)�F = 0 for i = 1, . . . , n. (8)
1 This is simply because the Mn monomials in νn(x) are linearly independent.
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The Space of Multibody Fundamental Matrices 5

Therefore, the multibody fundamental matrix F is also rank deficient, because
the n embedded epipoles {νn(ei)}n

i=1 lie in its left null space. Notice, however,
that the dimension of the null space of F need not be n, because the embedded
epipoles may not be linearly independent. For instance, if two different rigid-
body motions have the same translation, but different rotation, then they have
the same epipole, hence the same embedded epipole.

The purpose of this section is to characterize the null space of F as a function
of the number of motions n, the number of different epipoles ne ≤ n (different
up to a scale factor) and the number of times {ki}ne

i=1, with
∑ne

i=1 ki = n, that
each epipole is repeated.2 More specifically, we prove the following theorem.

Theorem 1 (Null space of F). Let F be the multibody fundamental matrix
generated by n fundamental matrices. Let ne be the number of different epipoles
and ki, i = 1, . . . , ne, be the number of times each different epipole is repeated.
The rank of the multibody fundamental matrix is bounded by

rank(F) ≤ Mn −
ne∑
i=1

Mki−1 ≤ Mn − n, (9)

where the inequality on the right hand side is true regardless of whether the
epipoles are repeated or not.

The formal proof of the theorem is organized as follows. In Section 3.1, we show
that if an epipole ei is repeated ki times, then all the derivatives of νn of order
less than ki evaluated at ei lie in the left null space of F . In Section 3.2, we
show that only Mki−1 of these derivatives are linearly independent, thus each
different epipole contributes with an Mki−1-dimensional subspace to null(F).
In Section 3.3 we show that these ne subspaces are independent, meaning that
they intersect only at 0. Therefore, the dimensionality of the null space of F is
at least

∑ne

i=1 Mki−1 ≥ n.

3.1 Partial Derivatives at Repeated Epipoles

In this subsection, we show that when an epipole ei is repeated ki times, not
only νn(ei) is in the null space of F , as shown by equation (8), but also the
derivatives of νn(x) of order less than ki at ei. Before proving this, we need the
following technical lemma, which allows us to express the derivatives of the nth
order MEC as a linear combination of MECs of lower order.

Lemma 1. Let F (n) be themultibody fundamental matrix generated by F1, . . . , Fn.
LetF (n−l)

j be amultibody fundamentalmatrix generated by a choice ofn−l out of the
n fundamental matrices for j = 1, . . . ,

(
n
l

)
. Then ∀(l1, l2, l3), such that l1+l2+l3 =

l, ∀x=[x, y, z]�, ∀y∈P
2, we have

2 The particular case in which one epipole is repeated k times, and the other n − k
epipoles are different can be found in [14].
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6 X. Fan and R. Vidal

∂l(νn(x)�F (n)νn(y))
∂xl1∂yl2∂zl3

=
(n

l)∑
j=1

αjνn−l(x)�F (n−l)
j νn−l(y), (10)

where the coefficient αj ∈ R depends on F (n) and y, but is independent of x.

We are now ready to show that the derivatives of νn at a repeated epipole lie in
the left null space of F .

Lemma 2. If ei ∈ P
2 is an epipole that is repeated ki times, and x = [x, y, z]�,

then ∀(l1, l2, l3), such that l1 + l2 + l3 = l ≤ ki − 1, we have

∂lνn(x)�

∂xl1∂yl2∂zl3

∣∣∣∣
ei

F = 0. (11)

Proof. Since ei is repeated ki times, there are ki fundamental matrices whose
left null space is ei. Then any choice of n−l fundamental matrices with l ≤ ki−1
will contain at least one fundamental matrix whose left null space is ei. From (8)
we have that ei is an epipole for each one of the multibody fundamental matrices
F (n−l)

j with l ≤ ki − 1, i.e., νn−l(ei)�F (n−l)
j = 0. This, together with Lemma 1,

implies that for all y ∈ P
2 and for all (l1, l2, l3) such that l1 + l2 + l3 = l ≤ ki − 1

∂lνn(x)�

∂xl1∂yl2∂zl3

∣∣∣∣
ei

Fνn(y) = 0.

Since this is true for all y ∈ P
2, the claim follows.

3.2 Dimension of the Subspaces Spanned by the Partial Derivatives

In this subsection, we show that an epipole repeated ki times contributes to
the null space of F with a subspace of dimension at least Mki−1. The result
is a consequence of the following facts: 1) the subspace spanned by the partial
derivatives of order l is included in any of the subspaces spanned by higher
order partial derivatives; and 2) the dimension of the subspace spanned by the
derivatives of order l is Ml.

First, notice that each entry of νn(x) is of the form γn1,n2,n3x
n1yn2zn3 with

n1 + n2 + n3 = n. After some simple algebraic calculations, we can show that

(n − l)
∂lνn(x)

∂xl1∂yl2∂zl3
= [

∂l+1νn(x)
∂xl1+1∂yl2∂zl3

,
∂l+1νn(x)

∂xl1∂yl2+1∂zl3
,

∂l+1νn(x)
∂xl1∂yl2∂zl3+1 ]x. (12)

Therefore, if we let Al(x) be the span of the l-th order partial derivatives of
νn(x), then (12) implies that Al(x) ⊆ Al+1(x) for all 0 ≤ l < n. By simple
induction we have that if ei is an epipole that is repeated ki times, then

A0(ei) ⊆ A1(ei) ⊆ · · · ⊆ Aki−1(ei). (13)

As a consequence of (13), studying the dimension of the subspace spanned by
all the partial derivatives at a repeated epipole up to a certain order, boils down
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to finding the dimension of the subspace spanned by the partial derivatives of
exactly that order. The following lemma shows that all the derivatives of a fixed
order are linearly independent, hence the dimension of Al(x) is Ml.

Lemma 3. For x ∈ P
2 and l < n, all the l-th order partial derivatives in the

form of
{

∂lνn(x)
∂xl1∂yl2∂zl3

}
l1+l2+l3=l

are linearly independent. Hence, the dimension

of Al(x) is Ml.

Proof. Our goal is to show that

∑
l1+l2+l3=l

αl1,l2,l3

∂lνn(x)
∂xl1∂yl2∂zl3

= 0 (14)

if and only if αl1,l2,l3=0 for all (l1, l2, l3) such that l1 + l2 + l3 = l. Since x =
[x, y, z]� 
= 0, without loss of generality let us assume that x 
= 0. Notice each
entry of ∂lνn(x)

∂xl1∂yl2∂zl3 is of the form xn1−l1yn2−l2zn3−l3 . Hence the first entry
of (14) has the form αl,0,0x

n−l = 0, and therefore αl,0,0 = 0. By sequentially
applying the same reasoning to entries of νn(x) of the form xn1yn2zn3 , where
(n1, n2, n3) = (n+l1−l, l2, l3) for l1 = l−2, l−3, . . . , 0, we obtain αl1,l2,l3x

n−l = 0,
and so αl1,l2,l3 = 0 as claimed.

3.3 Independence of Subspaces Corresponding to Different Epipoles

In this subsection, we show that the subspaces associated with different epipoles
are independent, in the sense that they intersect only at 0. Therefore, the di-
mension of the left null space of F , which contains the union of the subspaces
associated with each one of the ne different epipoles, is lower bounded by the
sum of the dimensions of these subspaces. The main result is summarized in
Lemma 4.

Lemma 4. Given two different epipoles e1 and e2 that are repeated k1 and k2
times, respectively, the span of the partial derivatives at e1 and e2 intersect only
at 0, i.e.,

Ak1−1(e1) ∩ Ak2−1(e2) = {0}. (15)

This completes the proof of the rank constraint on the multibody fundamental
matrix rank(F) ≤ Mn −

∑ne

i=1 Mki−1. Furthermore, because
∑ne

i=1 Mki−1 ≥ n
when

∑ne

i=1 ki = n, we immediately know that rank(F) ≤ Mn − n regardless of
whether the epipoles are repeated or not.

4 Geometry of the Space of Multibody Fundamental
Matrices

Recall from Section 2 that given enough point correspondences, one can compute
the corresponding multibody fundamental matrix F by solving the linear system
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8 X. Fan and R. Vidal

V nf = 0 in (5). With perfect data, the linearly estimated F will automatically
satisfy the rank constraints studied in the previous section. However, with noisy
data the so-computed F may not be geometrically correct, because the rank
constraints are not taken into account.

In this section, we propose to enforce these constraints by first estimating the
null space of V n ignoring the internal algebraic structure of F , and then projecting
the matrix thus obtained onto the space of multibody fundamental matrices. Our
analysis applies to both the uncalibrated case, in which we only need to enforce
rank constraints on F , as well as the calibrated case, in which the singular values
of F must satisfy additional constraints due to the geometry of so(3) × SO(3).
First, we introduce some invariant properties of the Veronese map and multibody
fundamental matrix. Then, we use these properties to characterize the singular
values of F under some constrained scenarios. Later, we propose a linear algebraic
technique to project the linearly estimated F onto the multibody fundamental
space, by exploiting both the rank and singular value constraints.

4.1 Invariance Properties of the Veronese Map

Before studying the geometry of the multibody fundamental matrix, let us first
explore some invariance properties of the Veronese map, which will be important
for the theoretical development in the following subsections.

Theorem 2 (Properties of νn). The Veronese map as defined in (3) has the
following properties for all x, y ∈ P

2:

– Inner product invariance: νn(y)�νn(x) = (y�x)n.
– Linear invariance: For all A ∈ R

3×3 there exists an A ∈ R
Mn×Mn such

that for all x, νn(Ax) = Aνn(x).
– Rotation invariance: For all R ∈ SO(3) there exists R ∈ SO(Mn) such

that for all x, νn(Rx) = Rνn(x).

Note that the rotation invariance property of the Veronese map implies that if
the image measurements {(xj

1, x
j
2)}N

j=1 are related by a multibody fundamen-
tal matrix F , then the rotated image measurements {(R1x

j
1, R2x

j
2)}N

j=1, where
R1, R2 ∈ SO(3), are related by a multibody fundamental matrix F ′ = R�

2 FR1,
where R1, R2 ∈ SO(Mn). This is because

νn(R2x2)�F ′νn(R1x1) = νn(x2)�R�
2 FR1νn(x1). (16)

Therefore, F and F ′ share the same singular values. This property is crucial for
characterizing the singular values of F , as we show in the next subsection.

4.2 SVD of the Multibody Essential Matrix

In the case of one motion, if we further assume that the camera calibration
parameters are known, then F is usually called the essential matrix and can be
expressed as [7]:

F = [T ]×R, with [T ]× ∈ so(3), R ∈ SO(3), (17)
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The Space of Multibody Fundamental Matrices 9

where [T ]× ∈ se(3) is a skew-symmetric matrix generating the cross product
by T ∈ R

3. This property allows us to characterize the singular values of F as
{‖T ‖, ‖T ‖, 0}.

In this subsection, we aim to generalize this result to n rigid-body motions by
characterizing the singular values of the multibody essential matrix F . To the
best of our knowledge, there is no prior work addressing this problem, which we
believe to be very challenging. Therefore, we restrict our attention to the case
of rigid-body motions with common rotation. This case shows up, e.g., when a
rigidly moving camera observes multiple translating objects. We show that in
this case F can be written as the product of a symmetric (n even) or skew-
symmetric (n odd) matrix with a rotation matrix as stated by the following
theorem.

Theorem 3 (Factorization of F). Let {(R, Ti) ∈ SE(3)}n
i=1 be n indepen-

dent rigid-body motions sharing a common rotation matrix R. Their multibody
essential matrix F satisfies

F = T R, (18)

where T ∈ R
Mn×Mn is a multibody fundamental matrix corresponding to

purely translational motions {Ti}n
i=1 which is either symmetric (n even) or

skew-symmetric (n odd), and R ∈ SO(Mn) is a rotation matrix in R
Mn .

Proof. Notice that Fi = [Ti]×R, hence for all x1, x2 ∈ P
2, and x′

1 = Rx1, the
multibody epipolar constraint can be written as

ν�
n (x2)Fνn(x1) =

n∏
i=1

(x�
2 [Ti]×Rx1) =

n∏
i=1

(x�
2 [Ti]×x′

1) =

ν�
n (x2)T νn(x′

1) = ν�
n (x2)T νn(Rx1) = ν�

n (x2)T Rνn(x1),

where the last step follows from the rotation invariance property of the Veronese
map. Therefore, F = T R, where T ∈ R

Mn×Mn is a multibody fundamental
matrix corresponding to purely translational motions {Ti}n

i=1, as claimed. Fur-
thermore, note that T is the symmetric tensor product of n essential matrices
associated with n purely translational motions. Since such essential matrices are
skew-symmetric, we have that T � = (−1)nT , hence T is symmetric when n is
even and skew-symmetric otherwise.

Thanks to Theorem 3, we can characterize the SVD of a multibody essential
matrix with a common rotation for an odd number of motions, as stated by the
following theorem.

Theorem 4 (Singular values of a multibody essential matrix with odd
number of motions). Let n be an odd number of independent rigid-body mo-
tions {R, Ti}n

i=1 with a common rotation R ∈ SO(3). The corresponding multi-
body essential matrix has a SVD F = UΣV �, with

Σ = diag{σ1, σ1, σ2, σ2, . . . , σm, σm, 0, . . . , 0}, (19)

where σ1 ≥ . . . ≥ σm ≥ 0 and m = �Mn−n
2 
, where �x
 is the largest integer that

is less than or equal to x ∈ R.
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10 X. Fan and R. Vidal

Proof. Let T be the multibody fundamental matrix corresponding to n transla-
tions {Ti}n

i=1. Based on Theorem 3, T shares the same singular values with F . T
is a skew-symmetric matrix when n is odd, and it is well-known that all non-zero
singular values of a skew-symmetric matrix must appear in pairs. Furthermore,
by Theorem 1, the rank of T is upper bounded by Mn − n, which means that T
has at least n or n + 1 zero singular values, depending on whether Mn − n is a
multiple of two or not, respectively.

Unfortunately, the above singular value characterization does not generalize to
an even number of motions, because in this case the multibody essential matrix
for purely translational motions is symmetric. However, when the number of
independent motions is two, we are still able to completely specify the singular
values of the multibody essential matrix, though using another method. More
precisely, we have the following result.

Theorem 5 (Singular values of two-body essential matrix). Let F be
the multibody essential matrix corresponding to two independent motions (R, T1)
and (R, T2) with a common rotation R. Its singular values σ1 ≥ . . . ≥ σ6 are

⎧⎪⎪⎨
⎪⎪⎩

σ1 = σ2 =
√

2||T1||2||T2||2+2(T1·T2)2

2

σ3 = ||T1||||T2||
2 − T1·T2

2 , σ4 = ||T1||||T2||
2 + T1·T2

2

σ5 = σ6 = 0

(20)

Furthermore, σ2
1 = σ2

2 = σ2
3 + σ2

4.

Proof. From Theorem 3, it is sufficient to characterize the singular values of
the multibody essential matrix T corresponding to two translational motions
T1 and T2. To this end, let R0 be a rotation matrix that maps T1 to T ′

1 =
R0T1 = ||T1||[1, 0, 0]�, and let T ′

2 = R0T2. Then the multibody fundamental
matrix associated with the two translational motions T ′

1 and T ′
2 = [u, s, v]�

T ′ = ‖T1‖

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 v

2 −
√

2u
2

0 0 0 −
√

2v
2

u
2 0

0 0 −
√

2v
2 0 0 0

0 v
2

u
2 0 −s 0

0 −
√

2u
2 0 s 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is much simpler, yet shares the same SVD with T and F due to the rotation
invariance property. The proof of the theorem follows by direct calculation of
the singular values of T ′.

4.3 Projection onto Multibody Essential Space

Given a characterization of the space of multibody essential matrices, our re-
maining task is to enforce these constraints in the estimation of F . We achieve

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



The Space of Multibody Fundamental Matrices 11

this by projecting the linearly estimated multibody fundamental matrix onto
the multibody essential manifold. The projection consists of two main steps.
First (Theorem 6), we show that the closest matrix B (in Frobenius norm) to an
arbitrary matrix A can be obtained by minimizing the sum-of-squares distance
among their corresponding singular values. Second (Theorems 7 and 8) we show
how to find the optimal singular values for each one of the characterizations of
the multibody essential matrix.

Theorem 6. Let the singular values of A, B ∈ R
m×m be σ1(A) ≥ . . . ≥ σm(A)

and σ1(B) ≥ . . . ≥ σm(B). Then

min
U�U=I, V �V =I

||A − UBV �||2f =
m∑

i=1

(σi(A) − σi(B))2, (21)

where ||A||f =
√

trace(A�A) is the Frobenius norm. Furthermore, if A =
U0diag{σ1(A), . . . , σm(A)}V �

0 , then the minimizing matrices U∗ and V ∗ are
such that U∗BV ∗T = U0diag{σ1(B), . . . , σm(B)}V �

0 .

Based on this projection theorem, one can find a matrix B with constrained
singular values that is closest in Frobenius norm to an arbitrary matrix A by
replacing the singular values of A by those with the desired structure.

In the case of uncalibrated cameras, as shown in Theorem 1, the rank of the
multibody fundamental matrix F is upper bounded by Mn − n when there are
n independent motions, hence F has at least n zero singular values. Such a rank
constraint can be enforced by simply setting the n smallest singular values of
the estimated F to 0.

In the case of calibrated cameras, the next two theorems show how to enforce
both rank and singular value constraints for the motions with common rotation.
The proof of the theorems is very straightforward: We solve an optimization
problem in the spirit of Theorem 6 with constraints as specified in Theorems 4
and 5 respectively, using the method of Lagrange multipliers.

Theorem 7 (Projection onto the n-body essential space for an odd
number of motions with common rotation). Let F̂ ∈ R

Mn×Mn be the
estimate of an n-body essential matrix with common rotation and n odd. Let
the SVD of F̂ be F̂ = U0diag{σ̂1, . . . , σ̂Mn}V �

0 , σ̂1 ≥ . . . ≥ σ̂Mn . The n-
body essential matrix F which minimizes the error ||F̂ − F||f is given by F =
U0diag{σ1, . . . , σMn}V �

0 , where σ2i−1 = σ2i = σ̂2i−1+σ̂2i

2 for 1 ≤ i ≤ �Mn−n
2 


and 0 otherwise.

Theorem 8 (Projection onto two-body essential space). Let F̂ ∈ R
6×6

be the estimate of a two-body essential matrix with common rotation. Let the
SVD of F̂ be F̂ = U0diag{σ̂1, . . . , σ̂6}V �

0 , where σ̂1 ≥ . . . ≥ σ̂6. The two-
body essential matrix F which minimizes the error ||F̂ − F||f is given by F =
U0diag{σ1, . . . , σ6}V �

0 , where σ1 = σ2 = β
√

σ̂2
3 + σ̂2

4, σ3 = βσ̂3, σ4 = βσ̂4,
σ5 = σ6 = 0 and β = 1

3 ( σ̂1+σ̂2√
σ̂2
3+σ̂2

4

+ 1).
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12 X. Fan and R. Vidal

5 Experiments

In our experiments, we compare the following algorithms:

1. GPCA: The Generalized Principal Component Analysis (GPCA) method
[12,13] is specifically designed for purely translational motions. In this case,
the epipolar constraint reduces to the linear equation

x�
2 [Ti]×x1 = T�

i (x2 × x1) = T�
i � = 0, (22)

where � = (x2 × x1) ∈ R
3. Consequently, the segmentation of 3-D transla-

tional motions is equivalent to clustering data {�} lying on a collection of
hyperplanes in R

3 whose normal vectors are {Ti}n
i=1.

2. Multibody epipolar constraint without projection (MEC-noprojection): This
method is described in [14]. Based on the multibody epipolar constraint
(MEC) in (4), the method estimates the multibody fundamental matrix F
linearly by solving (5). Then, it computes the epipolar line in the second
view �j

2 associated with each image pair (xj
1, x

j
2) from the derivatives of the

MEC, and obtains the epipole in the second view ei for each independent
motion by clustering all the epipolar lines using the GPCA algorithm [13].
The segmentation of the image data is obtained by assigning image pair
(xj

1, x
j
2) to the i-th motion whose associated epipole ei is closest to the

epipolar line �j
2. Finally, the single-body fundamental matrix Fi and the

rigid-body motions {(Ri, Ti)}n
i=1 are computed using the standard 8-point

algorithm.
3. Multibody epipolar constraint with projection (MEC-projection): This algo-

rithm is essentially the same as MEC-noprojection, except for two main
differences. First, the linearly estimated multibody fundamental matrix F is
projected onto the multibody essential manifold by enforcing the rank and
singular value constraint, as described in Section 4.3. Second, the segmenta-
tion of the image features is obtained by first computing the epipole ej for
each image pair (xj

1, x
j
2) by a polynomial differentiation method as described

in [14], and then assigning the image pair (xj
1, x

j
2) to the i-th motion whose

associated epipole ei is closest to the epipole ej of (xj
1, x

j
2).

Synthesized data: First, we evaluate the performance of our motion segmen-
tation algorithm as a function of the amount of noise in the image measure-
ments on the synthesized data. More specifically, we randomly pick n = 2 col-
lections of N = 100 feature points each and apply a different rigid-body motion
(R, Ti) ∈ SE(3), with R ∈ SO(3) the rotation and Ti ∈ R

3 the translation
(i = 1, . . . , n). Zero-mean Gaussian noise with standard deviation (std) from 0
to 2.0 pixels is added to the images x1 and x2 independently. The image size is
500 × 500 pixels, and we run 500 trials for each noise level. For each trial, the
error between the true motions {(Ri, Ti)}n

i=1 and the estimates {(R̂i, T̂i)}n
i=1 is

computed as3

3 We do not compute the rotation error for the GPCA method because it assumes
that each rigid-body motion is pure translational.
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Translation error =
1
n

n∑
i=1

acos
( T�

i T̂i

‖Ti‖‖T̂i‖

)
(degrees).

Rotation error =
1
n

n∑
i=1

acos
(trace(RiR̂

�
i ) − 1

2

)
(degrees).

The segmentation error is estimated by computing the percentage of incorrectly
classified feature points.

The left column of Figures 1(a)-(c) plots the mean error in translation, ro-
tation and segmentation as a function of noise (standard deviation in pixels),
in the case of two purely translational motions with translation directions T1 =
[1, 0, 1]� and T2 = [1, 0, −1]�. We also generated data undergoing two rigid-body
motions with translations T1 and T2 and a common rotation R. The rotation
axis is chosen at random, and the rotation angle is gradually increased from 0 to
30 degrees. The noise level is fixed at 2.0 pixel standard deviation. Similarly to
the pure translational case, we plot the mean error in translation, rotation and
segmentation as a function of the rotation angle for the GPCA and MEC-based
algorithms in the right column of Figure 1.

Notice that in the case of purely translational motions, the GPCA-based
algorithm outperforms the MEC-based algorithms. This is because GPCA is
specifically designed for purely translational motions. However, notice that as
the amount of rotation increases, the performance of GPCA deteriorates very
quickly, while the MEC-based algorithms have almost constant error. This is
expected, as the GPCA algorithm is only applicable to translational motions.

Comparing the result of MEC-projection to that of MEC-noprojection, we can
clearly observe an improvement in the recovered rigid-body motion in the sense
of reducing the rotation and translation errors. However, on average, the error
in the segmentation of the point correspondences increases with the projection.
This is because our method minimizes the sum of the squares of the MECs, which
does not depend on the segmentation. Therefore, the projection step is meant
to improve the estimation of motion parameters, which does not necessarily
guarantee that feature classification will improve.

Real images – Experiment I: We also evaluate the performance of our motion
segmentation algorithm on 22 pairs of real images taken from the three-car
sequence shown in Figure 2. Originally, there are three independent motions
between every two frames, among which the first two are pure translational.
In order to use the MEC-projection algorithm, we artificially create a situation
where there is a common rotation between every pair of frames as follows: Let
{(xj

1, x
j
2)} be a set of point correspondences between two frames, and J1, J2

and J3 be three sets of indices of feature points on the three independently
moving objects respectively. We first compute the rigid-body motion (R, T3) of
the third object from its own image correspondences {(xj

1, x
j
2) : j ∈ J3} using

the standard eight-point algorithm, i.e.,

Kxj
2 ∼ RKxj

1 + T3, j ∈ J3,
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(a) in translation
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(b) in rotation
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(c) in segmentation

Fig. 1. Error in the estimation of the translation, rotation (degrees) and segmentation
(percentage). In the left column, there are two purely translational motions, with the
x-axis indicating the standard deviation of the Gaussian additive noise in the image
points (in pixels); in the right column, there are two independent motions with a
common rotation, with the x-axis indicating the rotation angle (in degrees). The noise
level is 2.0 pixel standard deviation.

where K is the camera calibration matrix. Because the first and second motions
are pure translational, we know that

Kxj
2 ∼ Kxj

1 + Ti, j ∈ Ji and i ∈ {1, 2}.

Therefore, if we let x̃j
1 = K−1R�Kx1 (j ∈ J1 ∪ J2), clearly the rotated point

correspondences (x̃j
1, x

j
2) (j ∈ Ji) undergo a new rigid-body motion (R, Ti),

where i∈{1, 2}.
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Fig. 2. Percentage of misclassification on a real sequence with 2 independent motions
with a common rotation for different frame pairs. The x-axis indicates frame pair index.

In particular, we collect the point correspondences {(x̃j
1, x

j
2) : j ∈ J1} ∪

{(xj
1, x

j
2) : j ∈ J3}, which undergo a two-body motion with a common rotation

following the above reasoning, and apply our motion segmentation algorithm.
In Figure 2, the results as the segmentation error of MEC-projection and MEC-
nonprojection are compared at 22 pairs of frames. We can see that projection
improves the segmentation results significantly in most cases. This is encouraging
as it suggests that a better estimation of motion parameters due to the projection
indeed improves the feature classification in some situations.

Real images – Experiment II: Finally, we conduct experiment on real images
of the car-road sequence shown in Figure 3, taken from a regular road scene.
There are two objects, two cars, moving roughly along two different lines. Hence
they naturally share a common rotation relative to the camera, whose motion is
arbitrary. We collect the point correspondences on the two cars and apply our
motion segmentation algorithm to eight pairs of images. Our segmentation result
is shown in Figure 3, from which we can again clearly see the improvement of
using the projection scheme proposed in this paper.

0 2 4 6 8
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20

30

40
MEC−projection
MEC−noprojection

Fig. 3. Percentage of misclassification on a real sequence with 2 independent motions
with a common rotation for different frame pairs. The x-axis indicates frame pair
index.
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6 Conclusions

We have presented a new approach for the analysis of dynamic scenes containing
multiple rigidly moving objects. Our approach is based on a characterization of
the space of multibody fundamental matrices in terms of its rank and geom-
etry, which can be used to obtain a more robust estimate of the multibody
fundamental matrix in the presence of noise via a suitable projection. Our char-
acterization is restricted to the case of two or odd number of rigid-body motions
with a common rotation. It remains open how to characterize the space of multi-
body fundamental matrices with different rotations or with an even number of
motions.
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Abstract. We propose a closed form solution for segmenting mixtures
of 2-D translational and 2-D affine motion models directly from the im-
age intensities. Our approach exploits the fact that the spatial-temporal
image derivatives generated by a mixture of these motion models must
satisfy a bi-homogeneous polynomial called the multibody brightness
constancy constraint (MBCC). We show that the degrees of the MBCC
are related to the number of motions models of each kind. Such degrees
can be automatically computed using a one-dimensional search. We then
demonstrate that a sub-matrix of the Hessian of the MBCC encodes in-
formation about the type of motion models. For instance, the matrix
is rank-1 for 2-D translational models and rank-3 for 2-D affine mod-
els. Once the type of motion model has been identified, one can obtain
the parameters of each type of motion model at every image measure-
ment from the cross products of the derivatives of the MBCC. We then
demonstrate that accounting for a 2-D translational motion model as a
2-D affine one would result in erroneous estimation of the motion models,
thus motivating our aim to account for different types of motion models.
We apply our method to segmenting various dynamic scenes.

1 Introduction

Recently, finding effective solutions to the motion segmentation problem has be-
come an important issue in numerous emerging applications. This has motivated
the development of various algorithms for motion segmentation. [1] fits a mixture
of 2-D parametric models through successive computation of dominant motions.
[2] clusters locally estimated 2-D motion models using K-means. The drawback
of most of these approaches is that they are based on a local computation of
2-D motion, which is subject to the aperture problem and to the estimation of
a single model across motion boundaries.

Global methods deal with such problems by fitting a mixture of motion models
to the entire scene. [9] fits a mixture of parametric models by minimizing a
Mumford-Shah-like cost functional. [3,4,5,6,7,8] fit a mixture of probabilistic
models iteratively using the Expectation Maximization algorithm (EM). The
drawback of such iterative approaches is that they are very sensitive to correct
initialization and are computationally expensive.

To overcome these difficulties, more recent work [10,11,12,13] proposes to solve
the problem globally by fitting a polynomial to all the image measurements and
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then factorizing this polynomial to obtain the parameters of each 2-D motion
model. These approaches have been shown to be effective at finding a good initial
estimate for iterative approaches as shown in [12] where the method has been
extended to most 2-D and 3-D motion models. [14] integrates the algorithms of
[13] and [2] to solve the motion segmentation problem. It applies [13] to a window
around every pixel in the scene and thus can account for multiple motions in
every such window. K-means is performed on a subset of these locally estimated
motion model parameters to get the motion model parameters describing the
entire scene.

Unfortunately, all the aforementioned approaches to motion segmentation as-
sume that the scene can be modeled as a mixture of motion models of the same
type. In practice, this is a significant limitation, because most dynamic scenes
exhibit different types of motions. For instance, in the sequence shown in Figure
1 the background is a translating image of a robot on a floor, where as the fore-
ground has a rotating patch that undergoes an affine motion. One could argue
that the 2-D translational model is a particular case of a 2-D affine model, hence
the problem could be solved by fitting a mixture of 2-D affine motion models.
In practice, however this results in poor performance, because in most cases the
data associated with simpler models is not rich enough to accurately define the
parameters of a more complex model. In fact, as we shall demonstrate later, it
is not valid to use algebraic methods such as [13] to estimate a 2-D translational
model as a special case of a 2-D affine motion model.

Fig. 1. Sequence consisting of a 2-D translational and a 2-D affine motion model

We are therefore faced with the problem of fitting multiple models of different
type to the image data without knowing which pixels correspond to which model.
There are many reasons why this problem is significantly more challenging than
fitting motion models of the same type.

1. The number of parameters defining each motion model is not the same,
hence one cannot directly apply methods based on clustering in the space
of parameters, such as K-means, as the parameters to be clustered live in
spaces of different dimensions.

2. The number of data points needed to fit a model is not the same, hence it
may be difficult to fit one model at a time, e.g., with RANSAC [15], without
knowing how many points to use. One could use the maximum number of
points needed to define the more complex model, but this may lead to poor
performance, as argued before.
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1.1 Paper Contributions

We propose a closed form solution to the problem of fitting an unknown number
of 2-D motion models of different type to the image derivatives, without know-
ing which pixels move according to the same motion model. To the best of our
knowledge, there is no prior work other than [16] addressing this problem in a
purely algebraic setting. However, [16] is a feature-based method, while ours is
a direct method. As such, finding a general methodology that solves the motion
segmentation problem for all kinds of motion models is at this point elusive.
Therefore, in this paper we restrict our attention to 2-D translational and 2-D
affine motion models, and propose an algebraic method that solves simultane-
ously for the type of motion model at every image measurement, the parameters
of each motion model, and the segmentation of the image data.

Our algorithm proceeds as follows. We fit a bi-homogeneous polynomial called
the multibody brightness constancy constraint (MBCC) to the image measure-
ments. We show that the degrees of the MBCC are related to the number of
translational and affine motions and that such degrees can be automatically com-
puted using a one-dimensional search. We then inspect the rank of a sub-matrix
of the Hessian of the MBCC at every pixel, and show it encodes information
about the type of motion model associated with the pixel. More specifically, this
matrix is rank-1 for 2-D translational models and rank-3 for 2-D affine mod-
els. We demonstrate that for any given image measurement, we can obtain the
parameters of each type of motion model at that measurement, from the cross
products of the derivatives of the MBCC, using an extension of the method re-
ported in [13]. We also explain why the method of [13] cannot be used to estimate
a 2-D translational model as a degenerate case of a 2-D affine motion model,
thus emphasizing the need to account for multiple types of motion models.

2 Segmenting Motions of Different Types

Consider a motion sequence taken by a moving camera observing an unknown
number of independently and rigidly moving objects. Assume that each one of the
surfaces in the scene is Lambertian, so that the optical flow u(x) = [u, v, 1]� ∈ P

2

of pixel x = [x, y, 1]� ∈ P
2 is related to the spatial-temporal image derivatives

at pixel x, y(x) = [Ix, Iy, It]� ∈ R
3, by the well-known brightness constancy

constraint (BCC)
y�u = Ixu + Iyv + It = 0. (1)

We assume that the optical flow in the scene is generated by nt 2-D transla-
tional motion models {ui ∈ P

2}nt

i=1

u = ui i = 1, . . . nt (2)

and by na 2-D affine motion models {Ai ∈ R
3×3}na

i=1

u = Aix =

⎡
⎣ a�

i1
a�

i2
0, 0, 1

⎤
⎦x i = 1, . . . , na. (3)
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After combining the 2-D translational and 2-D affine motion models with the
BCC (1) we obtain

y�ui = 0 and y�Aix = 0 (4)

respectively. Notice that the total number of motion models n = nt +na may be
larger than the number of independent rigid-body motions because of perspective
effects, depth discontinuities, occlusions, transparent motions, etc.

In the presence of n = 1 motion, the above motion constraints are either
linear or bilinear on the image measurements (x, y) and linear on the motion
parameters u1 or A1. Therefore, if the type of motion model is known, one can
estimate the motion model linearly from a collection of N image measurements
{(xj , yj)}N

j=1 using one of the equations in (4). In the presence of nt +na motion
models, we cannot solve the problem linearly because we do not know

1. The type of motion model associated with each image measurement (x, y).
2. The parameters of the motion model associated with each image measure-

ment (x, y), or equivalently the segmentation of the data.
3. The number of translational and affine motion models.

Therefore, we are faced with the following problem:

Problem 1 (Segmenting motion models of different types). Given the spatial-
temporal derivatives {(Ixj , Iyj , Itj))}N

j=1 of a motion sequence generated from nt

translational and na affine motion models, estimate the number of motion mod-
els (na, nt), the optical flow u(xj) and the type of motion model at each pixel
{xj}N

j=1, and the motion parameters of the nt + na models, without knowing
which image measurements correspond to which motion model.

2.1 Multibody Brightness Constancy Constraint for Motions of
Different Types

Let (x, y) be an image measurement associated with any of the motion mod-
els. According to the BCC (1) there exists a motion model Mk whose optical
flow uk(x) satisfies y�uk(x) = 0. Therefore, the following multibody brightness
constancy constraint (MBCC) must be satisfied by every pixel in the image

MBCC(x, y) =
nt∏

i=1

(y�ui)
na∏
j=1

(y�Ajx) = 0. (5)

From equation (5) we can see that if na = 0, the MBCC is a homogeneous
polynomial of degree nt in y = [y1, y2, y3]� which can be written as a linear
combination of the monomials yn1

1 yn2
2 yn3

3 with coefficients Un1,n2,n3 . By stacking
all the monomials in a vector νnt(y)∈R

Mnt and the coefficients in a multibody
optical flow vector U ∈R

Mnt , where Mnt=
(nt+1)(nt+2)

2 , we can express the MBCC
as [13]

MBCC(x, y) = νnt(y)�U =
nt∏
i=1

(y�ui). (6)
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The vector νnt(y)∈R
Mnt is also known as the Veronese map of y of degree nt.

Similarly, if nt = 0, the MBCC is a bi-homogeneous polynomial of degree
na in (x, y). The coefficients of this polynomial can be stacked into a multibody
affine matrix A ∈ R

Mna×Mna , so that the MBCC can be written as [13]

MBCC(x, y) = νna(y)�Aνna(x) =
na∏
j=1

(y�Ajx). (7)

In the case of nt translational and na affine motion models, if we let the
(m1, m2, m3)th row of A be aT

m1,m2,m3
, we can write the MBCC as

(
νnt(y)�U

)(
νna(y)�Aνna(x)

)
=

(∑
yn1
1 yn2

2 yn3
3 Un1,n2,n3

) (∑
ym1
1 ym2

2 ym3
3 aT

m1,m2,m3
νna(x)

)

=
∑

yn1+m1
1 yn2+m2

2 yn3+m3
3 Un1,n2,n3a

T
m1,m2,m3

νna(x)

= νna+nt(y)�Mνna(x) = 0.

We call M ∈ R
Mna+nt×Mna the multibody motion matrix, because it contains

information about all the motion models {ui}nt

i=1 and {Ai}na

i=1. Note that when
na = 0, M is equivalent to the multibody optical flow U and when nt = 0, M
is equivalent to the multibody affine matrix A.

2.2 Computing the Multibody Motion Matrix

In order to compute the multibody motion matrix M, note that the MBCC
holds at every image measurement {(xj , yj)}N

j=1. Therefore, we can compute M
by solving the linear system,

L(na,nt)m = 0, (8)

where the jth row of L(na,nt) ∈ R
N×Mna+ntMna is given as (νna+nt(yj) ⊗

νna(xj))� and m is the stack of the columns of M.
If na > 0, notice that some entries of M are zero, because the entries (3, 1)

and (3, 2) of each Ai are zero. Therefore, we can obtain a more robust estimate
of M in the presence of noise by solving the linear system

L̃(na,nt)m̃ = 0, (9)

where m̃ ∈ R
Mnt+naMna−Z(na,nt) is the same as m, but with the correspond-

ing Z(na,nt) zero entries removed, and L̃(na,nt) ∈ R
N×(Mna+ntMna−Z(na,nt)) is

the same as L(na,nt), but with Z(na,nt) columns removed. We solve for m̃ in a
least-squares sense as the singular vector of L(na,nt) associated with its small-
est singular value. The scale of M is obtained from M(Mna+nt , Mna) = 1, as
ui(3) = Aj(3, 3) = 1.
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2.3 Computing the Number of Motion Models

Note that in order to solve for M from the linear system L̃(na,nt)m̃ = 0, we need
to know the number of translational and affine models, nt and na, respectively.
This problem is indeed more challenging than estimating the number of motion
models when all the models are of the same type. This is because there can
be multiple possible combinations of (na, nt) for a given data set, as we shall
elucidate later in this section.

In order to determine the number of models, we assume that the image mea-
surements (xj , yj) are non-degenerate, i.e. they do not satisfy any homogeneous
polynomial in (x, y) of degree less than na in x or less than nt + na in y. This
assumption is analogous to the standard assumption in structure from motion
that image measurements do not live in a critical surface. Under this assumption,
we have the following:

Theorem 1 (Number of translational and affine motion models). Let
L̃(n′

a,n′
t) ∈ R

N×Mn′
t+n′

a
Mn′

a
−Z(n′

a,n′
t) be the matrix in (9), but computed with the

Veronese map of degree n′
a in x and n′

a + n′
t ≥ 1 in y. If rank(Ai) ≥ 2 for

all i = 1, . . . , na, and a large enough set of image measurements in general
configuration is given, then the number of affine and translational motions is,
respectively, given by

na = arg min
n′

a

{n′
a : ∃n′

t ≥ 0 : L̃(n′
a,n′

t) drops rank by 1}

nt = arg min
n′

t

{n′
t : L̃(na,n′

t) drops rank by 1}.
(10)

Proof. From the non-degeneracy assumption we have that

1. If n′
a < na or n′

t +n′
a < nt +na, there is no polynomial of degree n′

a in x or
of degree n′

a + n′
t in y fitting the data, hence L̃(n′

a,n′
t) is of full column rank.

2. If n′
t + n′

a = nt + na and n′
t ≤ nt, there is exactly one polynomial fitting

the data, namely νn′
t+n′

a
(y)�Mνn′

a
(x), thus L̃(n′

a,n′
t) drops rank by 1. This

is true for all n′
t ≤ nt, given n′

t + n′
a = nt + na, because each translational

motion model can also be interpreted as an affine motion model.
3. If n′

t + n′
a > nt + na and n′

a ≥ na, there are two or more polynomials of
degree n′

a in x and n′
a + n′

t in y that fit the data, namely any multiple of
the MBCC. Therefore, the null space of L̃(n′

a,n′
t) is at least two-dimensional

and L̃(n′
a,n′

t) drops rank by more than 1.

We conclude that there can be multiple values of (n′
a, n′

t) for which the matrix
L̃(n′

a,n′
t) drops rank exactly by 1, i.e. whenever n′

t + n′
a = nt + na and n′

t ≤ nt.
Thus, the correct number of motions (na, nt) can be obtained as in (10).

As a consequence of the theorem, we can immediately devise a strategy to search
for the correct number of motions. Since we know that the correct number of
motions occurs for the minimum value of n′

a such that n′
t + n′

a = nt + na and
L̃(n′

a,n′
t) drops rank by 1, we can initially set (n′

a, n′
t) = (0, 1), and then increase
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Fig. 2. Plot of the possible pairs of (n′
a, n′

t) that give a unique solution for the MBCC.
The correct number of motions is (na, nt) = (3, 2).

n′
a while keeping n′

a + n′
t constant and check if L̃(n′

a,nt) drops rank. If L̃(n′
a,n′

t)
does not drop rank, we increase n′

a + n′
t by one, reset n′

a = 0 and repeat the
process until L̃(n′

a,n′
t) drops rank by 1 for the first time. This process will stop at

the correct (na, nt).
Figure 2 shows the possible solutions for which the data matrix would have

a rank deficiency of 1 and illustrates our method for searching for the number
of motions (na, nt) in the particular case of na = 3 affine motions and nt = 2
translational motions. In this case, we search for the correct (na, nt) in the
following order (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), · · · (0, 5), (1, 4), (2, 3),(3, 2).

Notice that the proposed search strategy will give the correct number of mo-
tions with perfect data, but will fail with noisy data, because L̃(n′

a,n′
t) will be full

rank for all (n′
a, n′

t). In this case, we can find (na, nt) as the pair that minimizes
the cost function⎡

⎣ σ2
Mn′

t+n′
a

Mn′
a
−Z(n′

a,n′
t)

(L̃(n′
a,n′

t))∑Mn′
t+n′

a
Mn′

a
−Z(n′

a,n′
t)
−1

j=1 σ2
j (L̃(n′

a,n′
t))

⎤
⎦

1
2

+ κ(n′
a + n′

t) + μn′
a, (11)

where σj(L) is the jth singular value of L, and κ and μ are parameters that
penalize increasing the complexity of the multibody motion model M. As be-
fore, this two-dimensional optimization problem is reduced to a one-dimensional
search by evaluating the cost function for values of (n′

a, n′
t) chosen in the order

(0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), · · · .

2.4 Computing the Motion Type at Each Pixel

Given the number of motion models (na, nt) and the multibody motion model
M, we now show how to determine the type of motion model associated with
each pixel: 2-D translational or 2-D affine. As it turns out, this can be done in
a remarkably simple way by looking at the rank of the matrix

H(x, y) =
∂MBCC(x, y)

∂y∂x
∈ R

3×3. (12)
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For the sake of simplicity, consider a scene whose optical flow at every pixel
can be modeled by one translational and one affine motion model, u and A, re-
spectively. In this case, the MBCC for the scene can be written as MBCC(x, y) =
(y�u)(y�Ax), hence

H(x, y) = uy�A + (y�u)A. (13)

Therefore, if an image measurement comes from the translational motion model
only, i.e. if y�

j u = 0, then

H(xj , yj) = u(y�
j A) =⇒ rank(H(xj , yj)) = 1. (14)

Similarly, if the image measurement comes from the affine motion model, i.e. if
y�

j Axj = 0, then

H(xj , yj) = u(y�
j A) + (y�

j u)A =⇒ rank(H(xj , yj)) = 3. (15)

This simple observation for the case na = nt = 1 generalizes to any value of
na and nt as stated in the following theorem.

Theorem 2 (Identification of the type of motion model). Given the
multibody motion model M of the scene, the type of motion model associated
with an image measurement (xj , yj) can be found as follows

1. 2-D translational if rank(H(xj , yj)) = 1.
2. 2-D affine if rank(H(xj , yj)) = 3.

Thanks to Theorem 2, we can automatically determine the type of motion model
associated with each image measurements. In the case of noisy image data, we
declare a model to be 2-D affine if

9∑
i=1

| det(H̃i(xj , yj))|
‖H̃i(xj , yj))‖2 + δ

> ε, (16)

where H̃i(xj , yj), i = 1, . . . , 9 are all the distinct 2 × 2 sub-minors of H(xj , yj).
δ is added in equation (16) to prevent the term on the left from blowing up when
any of the H̃i(xj , yj), i = 1, . . . , 9 has a value close to 0.

2.5 Computing the Motion Model at Each Pixel

Given the number and types of motion models, and the multibody motion model
M, we now show how to compute the individual 2-D translational {ui}nt

i=1 and
2-D affine {Ai}na

i=1 motion models. One possibility is to simply separate the data
into two groups, 2-D translational data and 2-D affine data, and then solve
separately for the 2-D translational and 2-D affine motion models by using the
algorithms in [13] for motion models of the same type. This amounts to solving
for the multibody optical flow U in (6) and the multibody affine matrix A in
(7), and then applying polynomial differentiation to obtain {ui}nt

i=1 from U and
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{Ai}na

i=1 from A. However, at this point we already have the multibody motion
M which is a matrix representation for U ⊗ A + A ⊗ U . Therefore, having to
recompute U and A would be extra unnecessary computation.

In this section, we show that the last steps of the method in [13] for motions
of the same type can also be applied to motions of different type by showing
that one can directly compute {ui}nt

i=1 and {Ai}na

i=1 from the derivatives of the
MBCC defined by M. We first notice that one can compute the optical flow u(x)
at each pixel in closed form, without knowing which motion model is associated
with each pixel. To this end, notice that, since each pixel x is associated with one
of the n = nt+na motion models, there is a k = 1, . . . , n such that y�uk(x) = 0,
where uk(x) is the optical flow evaluated as per the kth motion model. Note
that the product

∏
� �=i(y

�u�(x)) = 0 for all i 	= k. Therefore, the optical flow
at a pixel can be obtained as

∂MBCC(x, y)
∂y

=
nt+na∑

i=1

ui(x)
∏
� �=i

(y�u�(x)) ∼ uk(x). (17)

Since the last entry of uk(x) is 1, we can scale the derivative accordingly and
this immediately gives us the optical flow at all pixels belonging to only one
motion model at a time. If a pixel happens to belong to two motion models, e.g.,
in regions of low texture for which y = 0, then the MBCC has a repeated factor,
hence its derivative is zero, and we cannot compute u(x) as before.

In the case of 2-D translational motions, the motion model is precisely the
optical flow at each pixel. Since we already know which pixels obey a 2-D trans-
lation model, we can take the optical flow at those pixels only and obtain the
nt different values {ui}nt

i=1 using any clustering algorithm in R
2, e.g., K-means.

Alternatively, one can choose nt pixels {xi}nt

i=1 with reliable optical flow and
then obtain ui = u(xi). Since we know that the image derivative y at a pixel
x must be orthogonal to the optical flow u(x), one can choose a measurement
(xnt , ynt

) that minimizes

d2
nt

(x, y) =
|MBCC(x, y)|2

‖Λ∂MBCC(x,y)
∂y ‖2‖y‖2

. (18)

The remaining measurements for (xi−1, yi−1) for i = nt, nt −1, . . . , 2 are chosen
by minimizing

d2
i−1(x, y) =

d2
i (x, y)

|y�u(xi)|2
‖Λu(xi)‖2

. (19)

Notice that in choosing the points there is no optimization involved. We just
need to evaluate the distance functions at each point and choose the one giving
the minimum distance. Once the {ui}nt

i=1 are calculated we can cluster the data

by assigning (xj , yj) to the model i that minimizes
(y�

j ui)2

‖ui‖2 .
In the case of 2-D affine motion models, one can obtain the affine motion

model associated with an image measurement (x, y) from the cross products of
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the derivatives of the MBCC constraint. More specifically, note that if (x, y)
comes from the ith motion model, i.e. if y�Aix = 0, then

∂MBCC(x, y)
∂x

∼ y�Ai. (20)

That is, the partials of the MBCC with respect to x give linear combinations
of the rows of the affine model at x. Now, since the optical flow u = [u, v, 1]�

at pixel x is known, we can evaluate the partials of the MBCC at (x, y1), with
y1 = [1, 0, −u]�, and (x, y2), with y2 = [0, 1, −v]�, to obtain the following linear
combination of the rows of Ai

gi1 ∼ ai1 − ue3 and gi2 ∼ ai2 − ve3, (21)

where ei is the ith row of the identity matrix. Let bi1 = gi1 × e3 ∼ ai1 × e3
and bi2 = gi2 × e3 ∼ ai2 × e3. Although the pairs (bi1, e1) and (bi2, e2) are
not actual image measurements, they do satisfy e�1 Aibi1 = a�

i1bi1 = 0 and
e�2 Aibi2 = a�

i2bi2 = 0. Therefore we can immediately compute the rows of Ai

up to scale factors λi1 and λi2 as

ã�
i1 = λ−1

i1 a�
i1 =

∂MBCC(x, y)
∂x

∣∣∣∣
(x,y)=(bi1,e1)

, (22)

ã�
i2 = λ−1

i2 a�
i2 =

∂MBCC(x, y)
∂x

∣∣∣∣
(x,y)=(bi2,e2)

. (23)

Finally, from the optical flow equations u = Aix we have that u = λi1ã
�
i1x and

v = λi2ã
�
i2x, hence the unknown scales are automatically given by

λi1 =
u

ã�
i1x

and λi2 =
v

ã�
i2x

. (24)

By applying this method to all pixels in the image obeying a 2-D affine motion
model, we can effectively compute one affine matrix A for each pixel, without yet
knowing the segmentation of the image measurements according to the na affine
models. In order to obtain na different affine matrices, we only need to apply
the method to na pixels corresponding to each one of the na models. We can
automatically choose the na pixels at which to perform the computation using
the same methodology proposed for 2-D translational motions, i.e. by choosing
points that minimize (18) and a modification of (19). For the 2-D affine models,
(19) is modified as

d2
i−1(x, y) =

d2
i (x, y)

|y�Aix|2
‖Λ(Aix)‖2

. (25)

Once the {Ai}na

i=1 are calculated we cluster the data by assigning (xj , yj) to

the model i that minimizes (y�
j Aixj)2

‖Aixj‖2 .
Note that if we were to account for a 2-D translational motion as a 2-D

affine motion, we would have ai1 ∼ ai2 ∼ e3.Then (21) would give us that
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gi1 ∼ gi2 ∼ e3 and hence imply that bi1 = gi1 × e3 = 0 and bi2 = gi2 × e3 = 0,
and the entire framework for estimating the 2-D affine motion model breaks
down. Consequently, it is not possible to estimate a 2-D translational model as
a 2-D affine model using the framework of [13]. Note that if na = 0 or nt = 0,
our algorithm is the same as [13].

2.6 Segmentation Scheme

We have demonstrated that given the spatial-temporal image derivatives y at
each pixel x in the image, one can obtain a 2-D translational or a 2-D affine
motion model describing the optical flow of that pixel using a linear technique.
The fundamental reason for this to be possible is that, even though different
regions in the image obey different motion models, by taking the product of the
equations defining each model in the MBCC, one obtains a multibody motion
model that is satisfied by every pixel in the image. This multibody model does
not take the region of support of each motion model into account and treats
each pixel independently. As such, whether two pixels are far or close to each
other has no effect on whether they belong to the same group or not, because
the segmentation given by the MBCC is based purely on motion information.

In most real sequences, however, nearby pixels usually move according to the
same motion model. Therefore, even though the MBCC leads to an elegant closed
form solution to segmentation, the segmentation results of the scheme discussed
in section 2.5 will have a lot of holes, as is evident in the results of [13]. One
would then have to use some ad-hoc method for smoothing the results.

We would like to design a segmentation scheme that incorporates spatial reg-
ularization, because it is expected that, in general, the points that are spatially
near by will obey the same motion model. Hence, we adopt the following seg-
mentation scheme. We assign to every pixel {xj}N

j=1, one of the nt + na motion
models that are evaluated as per the discussion in Section 2.5. We consider a
window W(xj) around every pixel xj and choose the model that minimizes the
sum of the squares of the BCC evaluated at every pixel in the window. That is,
we assign to xj a motion model M as follows.

M(xj) = min
k=1...nt+na

{Mk :
∑

xm∈W(xj)

(y�
muk(xm))2}, (26)

where uk(xj) is the optical flow evaluated at xj according to the motion model
Mk. This is equivalent to assigning to a window the motion model that gives
the least residual with respect to the BCC for that window. By applying this
procedure to all pixels in the image, {xj}N

j=1, we can segment the entire scene.
One can then refine the motion model parameters by re-calculating the motion
parameters for each segment.

3 Experimental Results

In this section, we analyze the performance of our proposed algorithm for seg-
menting image measurements arising from multiple motion models.
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Fig. 3. Results of estimation of number of motion models for 1000 trials and noise
levels with σ ∈ [0, 0.01] for the cases (na, nt) = (1, 1), (2, 1) and (1, 2). Every histogram
has the number of true motion models listed above it in the format nt = n1, na = n2.

3.1 Synthetic Data: Estimation of Number of Motion Models

We first demonstrate the performance of the algorithm in the estimation of
the number of 2-D motion models in the presence of noise. For a particular
(na, nt) we first randomly generate na 2-D affine and nt 2-D translational motion
models and then randomly choose 500 points for each model. The optical flow
u at each point is generated according to its corresponding motion model and
this is then used to generate a random vector y of spatial and temporal image
derivatives satisfying the brightness constancy constraint (1). The coordinates
of y are constrained to be in [−1, 1] to simulate image intensities in the [0, 1]
range. Zero-mean Gaussian noise with standard deviation σ ∈ [0, 0.01] is added
to the partial derivatives y. We run 1000 trials for each noise level and for every
trial we estimate the number of translational and affine motion models as per
(11). We used κ = 1.5 × 10−4 and μ = 2 × 10−5 in our experiments.

The results are displayed in the form of histograms in Figure 3. Each histogram
helps us analyze the number of trials in which our algorithm predicts a particular
number of translational or affine models at different noise levels. It can be seen
that in most cases the estimation of the number of models is very good. In fact,
we see that when the number of models is not correctly estimated, it usually is
the case that a translational model is estimated as an affine model. In such cases,
the number of affine models is overestimated and the number of translational
models is underestimated. This can be easily verified from the histograms. Note
that the estimation of number of models is quite good for (na, nt) = (2, 1) and
(na, nt) = (1, 2) but the estimation of number of translational models is not
good for (na, nt) = (1, 1). This leads us to believe that the estimation process is
sensitive with respect to κ and μ.
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Segmentation results of [13] using nt = 2, na = 0

Segmentation results of [13] using nt = 0, na = 2

Points satisfying 2-D affine motion as predicted by our method

Segmentation results of our method using nt = 1, na = 1

Fig. 4. Comparison of segmentation results of our method with the methods of [13]
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Frames from the sequence to be segmented

Segmentation results of [13] using nt = 2, na = 0

Segmentation results of [13] using nt = 0, na = 2

Segmentation results of our method using nt = 1, na = 1

Fig. 5. Comparison of segmentation results of our method with the methods of [13]
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3.2 Real Data

We now demonstrate the performance of our algorithm on real world sequences.
The pixels co-ordinates are normalized to be 0 mean and lie between −1 and 1.
We use the combinations (na, nt) = (0, 2) and (na, nt) = (2, 0) for the methods
of [13]. We use (na, nt) = (1, 1) for our method and use windows of size 3 × 3 to
describe local neighborhoods for our segmentation scheme. In each frame, points
that do not correspond to a particular group are colored black.

Figure 4 shows the segmentation of the sequence shown in Figure 1, obtained
using the methods in [13] and our method. As mentioned earlier, the rotating
patch in the foreground obeys a 2-D affine motion model, while the background
obeys a 2-D translational motion model. Note that the group of points obeying
the 2-D affine motion (shown in white color) is estimated quite accurately using
our method. The segmentation obtained assuming two 2-D translational motions
is bad. This is expected, because it is not possible to represent a 2-D affine motion
as a 2-D translational motion. The segmentation obtained assuming 2-D affine
motions is also bad. This is in conjunction with our argument that we cannot use
the method of [13] to estimate a 2-D translational motion as a special case of a 2-
D affine motion. Our method on the other hand gives good segmentation results
as we account for the correct types of motion models in the scene. Although
there are a few areas that are segmented incorrectly by our method, note that
these patches are textureless. Since they can obey any motion model, they are
expected to be segmented arbitrarily.

Figure 5 shows the segmentation of the sequence shown in the first row, ob-
tained using the methods of [13] and our method. The sequence in Figure 5 has
a rotating image frame of a parking lot in the background that is obeying a 2-D
affine motion. The patch in the foreground is undergoing a left-upward trans-
lational motion. Note that our method gives much better segmentation results
than [13]. In fact, the areas that are incorrectly segmented mostly correspond to
textureless patches in the scene.

4 Summary and Conclusions

We have presented a closed form solution for segmenting the motion of a scene
consisting of a mixture of 2-D translational and 2-D affine motion models, di-
rectly from the image intensities. We have shown that if one were to adopt the
algebraic approach of [13], it is imperative that we do not estimate a 2-D trans-
lational model as a degenerate case of a 2-D affine model. The highlight of our
algorithm is that it provides an algebraic framework that lets us deal with a
mixture of motion models of different types.

A major bottleneck in the performance of the method is the evaluation of the
rank of H(x, y). If the rank is not estimated properly then this will result in
an incorrect identification of type of motion. This could obviously result in a
bad estimation of the motion model parameters and hence poor segmentation.
Future work entails finding a robust way of estimating the rank of H(x, y).
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Abstract. We present a novel method for the detection of motion boundaries in
a video sequence based on differential properties of the spatio-temporal domain.
Regarding the video sequence as a 3D spatio-temporal function, we consider the
second moment matrix of its gradients (averaged over a local window), and show
that the eigenvalues of this matrix can be used to detect occlusions and motion
discontinuities. Since these cannot always be determined locally (due to false
corners and the aperture problem), a scale-space approach is used for extracting
the location of motion boundaries. A closed contour is then constructed from the
most salient boundary fragments, to provide the final segmentation. The method
is shown to give good results on pairs of real images taken in general motion. We
use synthetic data to show its robustness to high levels of noise and illumination
changes; we also include cases where no intensity edge exists at the location of
the motion boundary, or when no parametric motion model can describe the data.

1 Introduction

Motion-based segmentation involves the partitioning of images in a video sequence into
segments of coherent motion. There are two main approaches to motion segmentation:
one may assume a global parametric motion model and segment the image according to
the parameters of the model (e.g., [5,14,15,20]), or one may assume piecewise smooth
motion and identify the boundaries along motion discontinuities (e.g., [1, 6, 13, 19]).

In this work we focus on the extraction of motion boundaries, which are defined
locally as boundaries between different motions (since many real video sequences do
not obey any global motion model). In addition, we restrict ourselves to solutions which
do not rely on the existence of color or texture boundaries between the moving object
and the background while computing motion boundaries (but see, for example, [2, 6,
18]). This is motivated by humans’ ability to segment objects from motion alone (e.g.,
in random dot stereograms), and by the need to avoid over-segmentation of objects
whose appearance includes varying color and textures. Finally, we only consider local
properties of the motion profile, in order to be able to deal with pairs of frames or stereo
pairs (but see, for example, [17]).

Motion boundaries can be computed by clustering a previously computed motion
field (e.g., [15, 20]). The problem is that motion discontinuities are found on exactly
those locations where the motion field computation is least reliable: since all optical
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flow algorithms rely on the analysis of a region around a point (even if only to compute
first order derivatives), the optical flow must be continuous within the region to support
reliable computation. This chicken-and-egg problem, which is characteristic (though
to a lesser extent) of the computation of intensity edges and some related problems,
makes motion segmentation particularly challenging. On the other hand, the successful
computation of motion discontinuities can be useful for a number of applications, in-
cluding motion computation (by highlighting those areas where the computation should
be considered unreliable) and object segmentation from multiple cues.

In our approach we start by considering the video sequence as a spatio-temporal
intensity function, where the goal is to extract information from this spatio-temporal
structure. Video sequences have highly regular temporal structure, with regions of co-
herent motion forming continuous tube-like structures. These structures break where
there is occlusion, creating spatio-temporal corner-like features. Using a differential op-
erator that detects such features, we develop an algorithm that extracts motion
boundaries.

Specifically, our algorithm is based on the occlusion detector described in Section 2.
This operator is used to extract a motion boundary at any given scale, as described in
Section 3. Since different scales may be appropriate for different parts of the image,
a cross-scale optimal boundary is computed, based on the response of the detector.
Finally, a closed contour is built along the most salient boundary fragments to provide
the final segmentation. In Section 4 we analyze the behavior of the detector. Some
experimental results are described in Section 5 using two challenging sequences of
real images (see, e.g., Fig. 8). We include a number of synthetic examples which are
particularly difficult for some commonly used algorithms, in order to demonstrate the
robustness of our method. Results from other algorithms, whose implementation was
made available by the authors, are provided for comparison.

2 Occlusion Detector

Regarding the video sequence as a spatio-temporal intensity function, let I(x, y, t) de-
note the intensity at pixel (x, y) in frame t. We refer to the average of the second mo-
ment matrix over a neighborhood ω around a pixel as the Gradient Structure Tensor

G(x, y, t) ≡
∑
ω

∇I (∇I)T =
∑
ω

⎡
⎣ I2

x IxIy IxIt

IxIy I2
y IyIt

IxIt IyIt I2
t

⎤
⎦ (1)

This matrix has been invoked before in the analysis of local structure properties.
In [7], eigenvalues of G were used for detecting spatio-temporal interest points. In [12]
it was suggested that the eigenvalues of G can indicate spatio-temporal properties of
the video sequence and can be used for motion segmentation. The idea behind this is
reminiscent of the Harris corner detector [3], as it detects 3D “corners” and “edges”
in the spatio-temporal domain. Here we take a closer look and develop this idea into a
motion segmentation algorithm.
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(a) (b) (c) (d)

Fig. 1. Random dots example. A shape is moving sideways, where both the shape and the back-
ground are covered by a random pattern of black and white dots. It is impossible to identify the
moving object from each of the two frames (a) and (b) (a stereo pair) alone. The occlusion de-
tector (c) (higher values of λ are darker) shows the outline of the object very clearly. Compare to
the ground truth (d).

Specifically, if the optical flow in ω is (vx, vy) and the brightness constancy assump-
tion [4] holds, then

G · (vx, vy, 1)T = 0 (2)

Hence, 0 is an eigenvalue of G. Since G is positive-semidefinite, we can use the small-
est eigenvalue of G as a measure of deviation from the assumptions above, which leads
to the following definition:

Definition 1. Let λ(x, y, t) denote the smallest eigenvalue of the Gradient Structure
Tensor G(x, y, t). The operator λ is the occlusion detector.1

We do not normalize λ with respect to the other eigenvalues of G (as in [12]), since it
may amplify noise.

In order to provide rotational symmetry and avoid aliasing due to the summation
over the neighborhood ω, we define ω to denote a Gaussian window, and the operation∑

ω in (1) stands for the convolution with a Gaussian. Since we do not assume tem-
poral coherence of motion, the Gaussian window is restricted to the spatial domain, as
explained in Section 3.

Figure 1 demonstrates the detector results on a simple synthetic example. In this
example there are no intensity or texture cues to indicate the boundaries of the moving
object, and it can only be detected using motion cues. The value of λ, shown in Fig. 1c,
is low in regions of smooth motion and high values of λ describe the boundary of the
moving object accurately.

2.1 Velocity-Adapted Detector

The values of ∇I , and hence of λ, are invariant to translation transformations on I .
Additionally, for any rotation matrix R,

|λI − G| = |R||λI − G||RT | = |λI −
∑
ω

(R∇I)(R∇I)T |

1 Note that the values of λ at each pixel can be evaluated directly using Cardano’s formula.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Motion Segmentation Using an Occlusion Detector 37

(a) (b) (c) (d)

Fig. 2. False λ response. The same example as in Fig. 1: (a) with 20% white noise; (b) with illu-
mination change of 5%; (c) with the object rotating by 20◦; (d) with both object and background
patterns deformed smoothly.

(I is the identity matrix) and therefore the values of λ are also invariant to the rotation
of I . The issue of scale invariance will be discussed in Section 3.

While rotational invariance is desirable in the spatial domain, non-spatial rotations
in the spatio-temporal domain have no physical meaning. It is preferable to have invari-
ance to spatially-fixed shear transformations, which correspond to 2D relative transla-
tional motion between the camera and the scene. As suggested in [9] by the reference
of Galilean diagonalization, one can use the velocity-adapted matrix G̃ given by

G̃ =

⎡
⎣G11 G12 0

G21 G22 0
0 0 λT

⎤
⎦ where λT =

det(G)
det(G∗)

(3)

(Gij denote the entries of G, and G∗ denotes the 2 × 2 upper-left submatrix of G
containing only spatial information).

Definition 2. The operator λT is the velocity-adapted occlusion detector.

To justify this definition, observe that G̃ is also invariant to translation and spatial rota-
tion. The entry λT is an eigenvalue of G̃, and it has been suggested that it encodes the
temporal variation, being the “residue” unexplained by pure-spatial information.

In practice, λT gives results similar to λ, though it has certain advantages, as dis-
cussed in Section 4. In the remainder of the paper we use λ to denote either operator,
unless stated otherwise.

2.2 Detector Effectiveness

High values of λ indicate significant deviation from (2), which is often due to the exis-
tence of a motion boundary. Other sources of large deviations include changes in illu-
mination (violation of the brightness constancy assumption), or when the motion varies
spatially (motion is not constant in ω). However, often these events lead to smaller λ
values as compared to motion boundaries (see Fig. 2), in which case the boundary re-
sponse can be distinguished from a false response by thresholding.

Low values of λ do not necessarily indicate that the motion in ω is uniform. The rank
of G is affected by spatial structure as well as temporal structure, so λ may be low even
at motion boundaries, when certain spatial degeneracies exist. Specifically, this occurs
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linear background

uniform background

same−color background

Fig. 3. Areas where the λ detector is likely to give low values despite the existence of a local
motion boundary

when there is local ambiguity, i.e., when the existence of a motion boundary cannot be
determined locally. This includes areas where the occluding object and its background
are of the same color, areas where the background is of uniform color, and areas where
the background texture is uniform in the direction of the motion (Fig. 3). In the first
case the rank of G is 0, and in the other cases the rank of G may be 1 or 2, depending
on the appearance of the occluding object (recall that the λ detector is high when the
rank of G is 3). In these cases, the background may be interpreted as part of the moving
object, since no features in the background appear to vanish due to occlusion.

The response of λ to occlusion occurs only where some background features become
occluded. Clearly boundary location cannot always be inferred based on local informa-
tion alone, and it is therefore necessary to integrate information across larger areas of
the image. This is done using scale-space techniques, as discussed in Section 3.

2.3 Temporal Aliasing

Since real video data is discrete, the partial derivatives in the definition of λ must be
estimated. This is done by convolving I with the partial derivatives of a 3-dimensional
Gaussian. Rotational invariance implies that the spatial variance in the X and Y di-
rections should be the same, and the kernel is therefore an ellipsoidal Gaussian with
spatial variance sxy and temporal variance st. Due to the distortion introduced by the
convolution, it is desirable that these values be small.

Estimating the temporal partial derivative from video presents a severe aliasing prob-
lem. Since video frames represent data accumulated during short and sparse exposure
periods, and since a feature may move several pixels between two consecutive frames,
data is aliased in the temporal domain significantly more than in the spatial domain. We
overcome this problem by taking advantage of the spatio-temporal structure of video,
as described next.

Suppose that the velocity in a certain region is v = (vx, vy), and therefore

I(x, y, t) = I(x − vxt, y − vyt, 0) (4)

The temporal derivative in t = 0 is given by

It = −vxIx − vyIy (5)

In discrete video, It can be estimated by convolution in the T direction, which, due
to (4), is the same as convolution in the v direction of a subsample of I(x, y, 0) at
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intervals of size |v|. In order to avoid aliasing due to undersampling while estimating
It, the Sampling Theorem requires I to be band-limited, so that its Fourier transform
vanishes beyond ± 1

2|v| . This can be achieved by smoothing with a spatial Gaussian.
However, smoothing poses a notable drawback, as it distorts the image data, causing
features to disappear, merge and blur.

An alternative approach, closely related to the concept of “warping” (e.g., [10]),
would be to take advantage of prior estimates of the optical flow. If a point is estimated
to move at velocity u = (ux, uy), we can use the convolution of I in the direction of
(ux, uy, 1) to estimate the directional derivative Iu and apply

It = Iu − uxIx − uyIy (6)

The convolution that yields Iu is equivalent to subsampling in the direction of v − u,
and thus the estimate of It is unaliased if the Fourier transform vanishes beyond
± 1

2|v−u| . This occurs when either the estimated velocity u is close to the real veloc-
ity v, or the region is smooth. This is particularly important, as the estimation of optical
flow in smooth regions is often inaccurate. Also note that the spatial smoothness of u is
not required.

Note that temporal smoothing has no effect on the aliasing problem, and it is desir-
able to have as little temporal smoothing as possible.

3 Extraction of Motion Boundaries and Scale-Space Structure

Recall from Section 2.2 that λ does not respond to motion boundaries when the bound-
ary cannot be inferred locally (e.g., when the object and the background are of the same
color locally). While there may be no cues to indicate the location of the boundary in
a fine scale, in a coarser scale (i.e., in a larger neighborhood) there may be enough
information and λ may respond. Thus we incorporate multi-scale component in our
algorithm, in order to detect motion boundaries that are not detectable at fine scales.

In order to define the notion of scale in our algorithm, note that the evaluation of
λ involves Gaussian convolutions in two different stages – during the estimation of the
partial derivatives, and when taking the average over the neighborhood ω. In both cases,
larger Gaussians lead to coarser structures, and we shall refer to the size of the Gaussian
as the scale. In this work we will only consider the spatial scale.

The notion of scale has been studied extensively for features such as edges and blobs.
As with these features, different structures can be found at different scales. The response
of λ to noise, which can occur in finer scales, is suppressed in coarser scales. On the
other hand, localization is poor at coarse scales and motion boundaries may break and
merge.

Figure 4 illustrates this idea – at fine scale (Fig. 4b), λ responds only at discrete
locations, because the background consists of regions with constant color, and the oc-
clusion can be detected only where there are color variations in the background. In the
coarser scale (Fig. 4c), the neighborhood of every boundary point contains gradients in
several directions and the boundary is detected continuously. In Section 3.2 we describe
a method to combine data from multiple scales.
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(a) (b) (c) (d)

Fig. 4. Checkerboard example: (a) A frame from the sequence; (b) and (c) show the response of
λ at fine (sxy = 1) and coarse (sxy = 10) scales respectively. At the fine scale, λ only responds
at intensity edges (which appear like discrete “bursts”), while the entire contour is visible at the
coarse scale, alas with considerable distortion. (d) shows the final contour selected by integrating
over scales.

Image features, such as edges, typically shift and become distorted at coarse scales.
The scale space structure of motion boundary edges (and in particular our occlusion de-
tector) has its own particular biases in coarse scales. As discussed in Section 4, motion
boundaries at coarse scales are shifted towards the occluded side, i.e., the occluding ob-
jects becomes “thicker”. In addition, it can be shown that the bias is stronger when there
is a large intensity difference between the object and the background, and it increases
with scale.

3.1 Scale Normalization

One problem with multi-scale analysis is that derivatives decrease with scale. Indeed, if
0 ≤ I ≤ 1, then

|Ix|, |Iy| ≤ 1√
2πsxy

(7)

when smoothing with a Gaussian of variance sxy . This well-known problem can be
handled by scale normalization, as proposed in [8]. Scale normalization is done by
defining the scale-normalized partial derivatives

I(sxy)
x =

√
sxy · ∂

∂x
(gsxy ∗ I) and I(sxy)

y =
√

sxy · ∂

∂y
(gsxy ∗ I) (8)

where gsxy∗ stands for convolution with a Gaussian with variance sxy . Thus I
(sxy)
x and

I
(sxy)
y are used in the evaluation of λ instead of Ix and Iy . Note that scale normalization

does not violate the assumptions leading to the definition of λ in Section 2.
One important property of scale normalization is that λ becomes invariant to spatial

scaling of I . This means that λ gives comparable values for a video sequence in different
resolutions.

To see this, let us scale I by α, and define

J(x, y, t) = I(x/α, y/α, t) (9)

Substituting (9) into (8) yields
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J
(α2sxy)
x (αx, αy, t) = I

(sxy)
x (x, y, t)

J
(α2sxy)
y (αx, αy, t) = I

(sxy)
y (x, y, t)

(10)

Let sω denote the variance of the Gaussian window ω, and let G(sxy,sω)[I] denote the
second moment matrix defined in (1), with the scales of differentiation and averaging
sxy and sω, respectively. From (10) it follows that

(
G(sxy,sω)[I]

)
(x, y, t) =

(
G(α2sxy,α2sω)[J ]

)
(αx, αy, t) (11)

That is to say, if J is a scaling by α of I , then the value of λ at (x, y, t) in I at scales
sxy, sω will be the same as at the corresponding point in J at scales α2sxy, α2sω.

For our purpose of computing a good occlusion detector, it follows from (11) that as
long as our computation scans all scales in scale space, the result does not depend on
the image resolution.

Note that in order for λ to be scale-invariant, it follows from (11) that sω must be
proportional to sxy , as in [7]. In our implementation we use s ≡ sxy = sω, which
defines a single scale s. We denote the λ evaluated at scale s as λ(s).

3.2 Boundary Extraction in Scale-Space

Since λ is computed by taking the average over a neighborhood, its response is diffuse.
We wish to extract a ridge curve where λ is strongest. This can be defined locally as
points where λ is maximal in the direction of the maximal principal curvature, which
can be expressed as⎧⎨

⎩
λxy(λ2

x − λ2
y) − λxλy(λxx − λyy) = 0

(λxx + λyy) ·
(
(λxx − λyy)(λ2

x − λ2
y) + 4λxλyλxy

)
< 0

λ2
xλyy − 2λxλyλxy + λ2

yλxx < 0
(12)

Thus, at every scale s, the values of λ and its derivatives are computed, and the ridge
can be extracted. For reasons of numerical stability, at each scale s the derivatives of
λ(s) are computed with the same Gaussian smoothing s.

Different boundaries are extracted at different scales, as fine-scale boundaries may
often split because of the absence of local information, and coarse-scale boundaries may
disappear or merge. Since these may occur at different parts of the image at different
scales, we wish to select different scales for boundary extraction at different localities
(as in [8]). Considering the multi-scale boundary surface as the union of all ridges in
λ(s) for s ∈ (0, ∞), we wish to find a cross-scale boundary where λ(s) is maximal.
This can be expressed as {

λs = 0
λss < 0 (13)

using the scale-derivatives of λ.
Combining (12) and (13) defines the final cross-scale motion boundary. It is a curve

in the three-dimensional space X−Y−S, defined by the intersection of the two surfaces
defined respectively by these 2 sets of equations.
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(a) (b)

Fig. 5. Saliency measure. (a) All boundaries extracted from the random dots example with illu-
mination changes (Fig. 2b); intensity codes λ response. (b) The most salient closed contour.

3.3 Segmentation

As stated above, λ also has some false responses which lead to the selection of false
boundary fragments. It is therefore necessary to define a saliency criterion, which is
used to select the most interesting boundaries. Since we regard λ as a measure of local
boundary strength, for each connected set of boundary points we define the saliency
measure to be the sum of the value of λ along the boundary, as in [8]. This measure
may be sensitive to fragmentation of the boundary, so in our implementation we tolerate
small gaps.

Finally, segmentation is achieved by searching for closed contours with high saliency
and small gaps. We employ a simple greedy heuristic to connect the motion boundary
fragments into a continuous boundary with maximal saliency and minimal gaps. Since
the extracted boundaries are usually almost complete, this heuristic gives good results
(see Fig. 5).

4 Analysis

In order to analyze the performance of the proposed technique, we consider a video of
two moving layers l1, l2, where w.l.o.g. l2 partially occludes l1. A frame in the video
sequence can be written as

I = l1 · (1 − α) + l2 · α (14)

where α is the matting map.
We assume w.l.o.g. that the occlusion edge is perpendicular to the X axis and that at

frame t = 0 it is at x = 0. We further assume that the occlusion edge is a Gaussian-
smoothed line, so α is of the form αs0(x) =

∫ x

−∞ gs0(u)du (we denote the Gaussian
function with variance s as gs).

If the motions of l1 and l2 are (v1
x, v1

y) and (v2
x, v2

y) respectively, then the video
volume is given by

I(x, y, t) = l1(x−v1
xt, y−v1

yt)·(1−α(x−v2
xt)) + l2(x−v2

xt, y−v2
yt)·α(x−v2

xt) (15)

Note that the motion of α is the same as the motion of l2, since it is the occluding layer.
Denoting the video volume of each layer as Ik(x, y, t) = lk(x − vk

xt, y − vk
y t), the

gradient of the video volume is given by

∇I = (1 − α) · ∇I1 + α · ∇I2 + (I2 − I1) · gs0 · n (16)
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where n = (1, 0, −v2
x)T . Note that n is perpendicular in space-time to the occlusion

edge (0, 1, 0)T and to the motion vector v2 = (v2
x, v2

y, 1)T , i.e., n is the normal of the
plane in the video space formed by the motion of the occlusion edge.

Therefore, ∇I is composed of the matting of ∇I1, ∇I2, and a component that de-
pends on I2 − I1. Note that ∇I1 is perpendicular to v1, while both ∇I2 and n are
perpendicular to v2. This means that ∇I is composed of two components that are re-
lated to the occluding layer and only one that is related to the occluded layer.

For scale-space analysis we use the approximation

g ∗ (f · α) ≈ (g ∗ f) · (g ∗ α) (17)

where g is a Gaussian function and α is an integral of a Gaussian as defined above.
Eq. (17) is an equality when f is constant, and it provides a good approximation when
f does not change rapidly near x = 0 (in each layer separately).

Applying (17), the gradient estimated at scale s, denoted by ∇I(s) = ∇(gs ∗ I), is

∇I(s) ≈ (1−αs0+s) · ∇I1(s) + αs0+s · ∇I2(s) + (I2(s)−I1(s)) · gs0+s · n (18)

4.1 Velocity-Adapted Occlusion Detector λT

We assume the 2D gradients in each layer are distributed isotropically, in the sense that
the mean gradient is 0. Furthermore, we assume that they are uncorrelated. Thus, using
(16) and (17), we can write the gradient structure tensor defined in (1) as

G(s) = gsω ∗
(
(1−α)2∇I1(∇I1)T + α2∇I2(∇I2)T + (I2−I1)2 · g2

s0
· nnT

)
≈ h1 · M1 + h2 · M2 + h3 · nnT (19)

where

Mk ≡

⎡
⎣ 1 0 −vk

x

0 1 −vk
y

−vk
x − vk

y (vk
x)2 + (vk

y )2

⎤
⎦ and

h1 = c1 · (1 − αs+s0+sω)2

h2 = c2 · α2
s+s0+sω

h3 = c · gsω+(s+s0)/2

(20)

The constants ck = var(‖∇lk‖)/2 and c = var(l2 − l1)/
√

4π(s + s0) describe the
distribution of intensities in the layers.

Then, the velocity-adapted occlusion detector from (3) can be shown to be

λT =
(v1

x − v2
x)2

1/h1 + 1/(h2 + h3)
+

(v1
y − v2

y)2

1/h1 + 1/h2
(21)

From the expression above, we can draw the following conclusions:

– λT has a single local maximum.
– In the special case where c1 = c2 (i.e., both layers have the same intensity variance)

and c → 0 (i.e., both layers have similar intensities), λT is maximal at x = 0.
– In the limit c → 0, λT is maximal when α(x) = 3

√
c1/( 3

√
c1 + 3

√
c2), which means

that the detected edge location is biased towards the layer with lower intensity
variance. The magnitude of the bias is proportional to

√
s + s0 + sω.

– If only c1 = c2 is assumed, then dλT

dx (x = 0) < 0, therefore λT is maximal at
a negative x, which means that the detected edge location is biased towards the
occluded layer.
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4.2 Occlusion Detector λ

Behavior analysis of the smallest eigenvalue λ is harder. Thus we make the further
assumption that l1 = l2 along the edge. Then we can omit the last term in (19) and get

G = c1(1 − α)2M1 + c2α2M2 (22)

Calculating the eigenvalue of (22), the following can be shown:

– The smallest eigenvalue of G is given by

λ =
1
2

(
a −

√
a2 − 4b

)
where

a = (1 − α)2c1‖v1‖2 + α2c2‖v2‖2

b = (1 − α)2α2c1c2‖v1 − v2‖2 (23)

– λ has a single local maximum.
– If c1‖v1‖2 = c2‖v2‖2, then λ is maximal at x = 0 — where the edge is located.
– If c1‖v1‖2 > c2‖v2‖2, then λ is maximal at some x > 0, and vice-versa; in other

words, the detected edge location is biased towards the layer with lower intensity
variance and smaller absolute motion.

The biasing effect of the occlusion relation is not evident due to the particular as-
sumption we have made, although it was observed in our experiments. Note that λ is
affected by absolute velocity, unlike the velocity-adapted operator λT .

5 Experimental Results

In our experiments we compared our algorithm with the most prominent motion seg-
mentation approaches, wherever code was available. To begin with, we establish the
baseline result by segmenting the optical flow. Such a segmentation lies at the heart of
some more elaborate segmentation methods, such as [15]. We used a robust and reliable
implementation of the Lucas-Kanade algorithm [10], and computed segmented it using
a variety of edge operators, including Canny and various anisotropic diffusion methods
and clustering methods (e.g., [20]), presenting the best results for each example.

One influential motion segmentation approach relies on graph cuts [6] (and is there-
fore related to the more traditional regularization based approaches [11]). Code for two
variants of this approach is available on the web by the respective authors [6,18], and we
could therefore use their code to establish credible comparisons. We note, however, that
in both cases the publicly available code can only work with rectified images. There-
fore, in order to obtain fair comparisons, we compared our results to the results of these
algorithms only with rectified image pairs, when possible.

Figure 6 demonstrates our algorithm on a stereo pair. The most salient motion bound-
ary is shown in Fig. 6b superimposed on the first input image. Fig. 6c illustrates the
baseline result - the edges of the optical flow. Although it is highly unstable in some
textureless areas, this does not affect our algorithm’s performance, as it is tolerant to
poor estimation of optical flow in such regions. Fig. 6d illustrates the best MRF-based
segmentation using graph cuts [18]. See also results in Fig. 7.

Figure 8 shows our algorithm’s performance on a video sequence with non-rigid
motion and illumination changes. The octopus and the reef below have similar color and
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(a) (b) (c) (d)

Fig. 6. Cup example. (a) The left image of a stereo pair. (b) Most salient edge detected by our
algorithm. (c) Edges in the horizontal component of the optical flow. (d) Edges from a graph cuts
segmentation algorithm [6].

(a) (b) (c) (d)

Fig. 7. Flower example. (a) The left image of a stereo pair. (b) Most salient closed contour de-
tected by our algorithm. (c) Edges in the optical flow. (d) Edges from a graph cuts segmentation
algorithm [6].

(a) (b) (c)

Fig. 8. Octopus example. (a) A frame from the sequence. (b) The most salient closed contour
detected by our algorithm. (c) Edges in the optical flow.

texture, and thus spatial coherence is unreliable (note in particular the triangle-shaped
projection near the octopus’ head, which is in fact a background feature). Although
optical flow is inaccurate at motion edges (Fig. 8c), this does not affect the quality of
the boundary extracted by our algorithm which uses it (Fig. 8b).

The tolerance to poor optical flow estimation is further demonstrated in Figure 9,
where a large amount of noise was added to the synthetic checkerboard sequence,
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(a) (b) (c) (d)

Fig. 9. Checkerboard example with 25% white noise. (a) One of the frames; (b) Lucas-Kanade
optical flow magnitude; (c) Segmentation using graph cuts; (d) The most salient contour found
by our algorithm.

(a) (b) (c) (d)

Fig. 10. Random dots example (see Fig. 1). With 20% white noise: (a) Segmentation using graph
cuts; (b) The most salient contour found by our algorithm. With smooth non-linear deformation:
(c) Segmentation assuming affine motion using an implementation of [20]; (d) The most salient
contour found by our algorithm.

causing numerous optical flow estimation errors. The magnitude of the flow estima-
tion error is often greater than the true flow (Fig. 9b), particularly around the centers of
the squares, making segmentation based directly on the optical flow impossible. Results
of the MRF-based method are also shown.

The main weakness of many MRF-based methods is the absence of spatial coher-
ence. This is demonstrated on the random dots example in Fig. 10a,b where such meth-
ods have no spatial support and therefore fail.

Fig. 10c,d demonstrates our algorithm’s advantage when no global motion model can
be assumed. In this example, the texture of both the moving object and the background
undergo smooth non-linear deformation. The results of applying [20] show that when
motion varies smoothly within an object, global model methods fail.

6 Discussion

The occlusion detector we have presented is useful for extracting motion boundaries.
Since we do not make any assumption regarding the color or texture properties of ob-
jects, or about the geometric properties of the motion, our algorithm works well on
natural video sequences where these assumptions cannot be made.

Although our algorithm uses precomputed optical flow, it is only used for estimating
the derivatives, and motion properties are not inferred from it. The algorithm is there-
fore not sensitive to the quality of the optical flow estimation, especially in textureless
regions where optical flow estimation is hard.
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The algorithm relies mainly on background features which disappear and reappear
as a result of occlusion. These features may be sparse and still indicate the location of
motion boundaries, as the algorithm processes the data in multiple scales. As opposed
to algorithms that rely on motion estimation, our algorithm usually does not require any
texture on the occluding object.

Since occlusion is the main cue used by our algorithm, it works well when velocity
differences between moving objects are small, since features will still disappear due to
occlusion. Algorithms that rely on motion differences may find it hard to distinguish
between different objects in such cases.
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Abstract. A scene containing multiple independently moving, possibly
occluding, rigid objects is considered under the weak perspective camera
model. We obtain a set of feature points tracked across a number of
frames and address the problem of 3D motion segmentation of the objects
in presence of measurement noise and outliers. We extend the robust
structure from motion (SfM) method [5] to 3D motion segmentation
and apply it to realistic, contaminated tracking data with occlusion. A
number of approaches to 3D motion segmentation have already been
proposed [3,6,14,15]. However, most of them were not developed for, and
tested on, noisy and outlier-corrupted data that often occurs in practice.
Due to the consistent use of robust techniques at all critical steps, our
approach can cope with such data, as demonstrated in a number of tests
with synthetic and real image sequences.

1 Introduction

The SfM problem has been addressed by the computer vision community since
late eighties. The factorisation procedure of Tomasi and Kanade [10] calculates
the three-dimensional coordinates of an object from a sequence of feature points
tracked across a number of frames. Given the 2D coordinates of the features, the
output is the 3D coordinates of the points and the base vectors of the camera
planes. The former is usually called the structure data, the latter the motion
information.

The Tomasi-Kanade method [10] is applicable to a single (segmented) dy-
namic rigid object viewed under orthography. More recent studies [2,13] at-
tempt extending the theory to the nonrigid case. Other studies [7,9] use the
para-perspective or the perspective camera models. A key problem of the fac-
torisation is, however, that of reliable segmentation. The procedure [10] is not
robust. In particular, it fails if the input 2D data contains points of different
moving objects.

A number of methods for 3D motion segmentation of feature points have
already been proposed. (In this paper, we only consider motion segmentation

R. Vidal, A. Heyden, and Y. Ma (Eds.): WDV 2005/2006, LNCS 4358, pp. 48–59, 2007.
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methods that explicitely use 3D information.) Most of the approaches work with
affine camera model. Costeira and Kanade [3] presented an algorithm based on
rank estimation of the measurement matrix. The matrix contains the 2D co-
ordinates of points tracked over all frames. A related algorithm was proposed
by Gear [4]. Kanatani [6] developed a subspace based method that also needs
rank estimation. Machline et al. [17] published a segmentation method applica-
ble to rigid objects and to nonrigid objects that can be represented by linear
combinations of rigid objects. The method relies on motion consistency that
groups together pixels whose motion follows the same pattern over time. In this
work, the measurement matrix is the optic flow field matrix whose columns are
clustered based on rank estimation of sub-matrices.

The major drawback of the above algorithms is that they are noise-sensitive
because of rank estimation. There is no universal, efficient rank estimation tech-
nique applicable to matrices deteriorated by significant noise and outliers. Un-
fortunately, the 2D coordinates of feature points tracked by standard trackers
(e.g., [11]) in real sequences form very noisy measurement matrices; the same
applies to measurement matrices based on optic flow.

For noise-free data, or in presence of small noise, the rank estimation based
algorithms work reasonably well. They can segment an arbitrary number of in-
dependently moving objects. However, the situation changes when real, strongly
contaminated tracking data is to be processed. This is why some of the above
studies (for example, [3,6]) use markers or manually selected feature points in
their tests.

Torr et al. [12] proposed 3D motion segmentation methods based on the esti-
mation of fundamental matrices or trifocal tensors. These algorithms work with
real perspective, but compute robust statistics only from two or three images.
The segmentation is based on clustering of the tracked feature points accord-
ing to fundamental matrices or trifocal tensors. A weak point of these methods
is handling relatively small objects. When an object is represented by a small
portion of all feature points, it is difficult to segment the points of the object
by clustering, because too many samples are needed to find the initial cluster.
Otherwise, the tests presented in [12] demonstrate that the methods can cope
with realistic data such as automatically tracked feature points.

The epipolar constraint was generalised to the multibody case by Vidal et
al. [14] who use the multibody fundamental matrix for SfM in case of multiple
moving objects. However, this method needs many image pairs to obtain the
multibody fundamental matrix, and it relies on rank estimation to calculate the
number of objects. The epipolar constraint was also applied for optical flow based
segmentation under weak perspective [15]. The disadvantage of this method is
the sensitivity of fundamental matrix computation to noisy co-ordinates of the
tracked points.

In this paper we propose a new robust method for 3D motion segmentation.
The proposed method is an extension of the weak-perspective SfM algorithm
of Hajder et al. [5] which is applicable to strongly contaminated tracking data,
when the inlier ration is below 50%. Due to the use of robust techniques, our
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3D motion segmentation approach can also handle such data. The advantage of
our method over the subspace based methods [3,6] is in the use of 3D motion
coherence. Motion based segmentation under weak perspective is a special type
of subspace clustering. The subspace methods do not consider constraints on 3D
motion of objects.

The structure of this paper is as follows. In section 2 we introduce basic notions
and present formulas related to structure from motion under orthography and
weak perspective. We will need these equations later on in section 3, where
the proposed method is described. Experimental results are given in section 4,
conclusions and outlook in section 5.

2 SfM Under Weak Perspective

Given P feature points of a rigid object trackedacrossF frames,xfp = (ufp, vfp)T ,
f = 1, . . . , F , p = 1, . . . , P , the goal of SfM is to recover the structure of the object.
For orthogonal projection, the 2D coordinates are calculated as

xfp = Rfsp + tf , (1)

where Rf = [rf1, rf2]T is the orthogonal rotation matrix, sp the 3D coordinates
of the point and tf the offset. Under the weak perspective model, the equation
is

xfp = qfRfsp + tf , (2)

where qf is the nonzero scale factor of weak perspective. The offset vector is
eliminated by placing the origin of 2D coordinate system at the centroid of the
feature points.

For all points in the f -th image, the above equations can be rewritten as

Wf = (xf1 . . . xfP ) = Mf · S (3)

where Mf is called the motion matrix, S = (s1, . . . , sP ) the structure matrix.
Under orthography Mf = Rf , under weak respective Mf = qfRf .

For all f , equations (3) form W = M ·S, where WT = [WT
1 , WT

2 , . . . , WT
F ] and

MT = [MT
1 , MT

2 , . . . , MT
F ]. The task is to factorise the measurement matrix W

and obtain the structural information S. This can be done in two steps. In the
first step the rank of W is reduced to three by the singular value decomposition
(SVD), since the rank of W is at maximum three: W 2F×P = M̂2F×3 · Ŝ3×P .
This factorisation is determined only up to an affine transformation because an
arbitrary 3 × 3 non-singular matrix Q can be inserted so that W = M̂QQ−1Ŝ.
Therefore M̂ contains the base vectors of the frames deformed by an affine
transformation. The matrix Q can be determined optimally by least squares
optimisation both for orthogonal [10] and weak-perspective [16] case imposing
the constraint on the frame base vectors. The estimated motion vectors can be
written as R = M̂Q, where R = [r11, r12, . . . , rF1, rF2]

T .
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3 Proposed Algorithm

The motion segmentation algorithm uses two basic assumption: Each object is
rigid, connected and does not contain narrow parts (compactness).

The main idea of the algorithm is as follows. Select and track as many feature
points as possible. Divide the first frame of the sequence into regions, for example,
discs or squares. The regions may overlap. (In our implementation, we use non-
overlapping squares.) A feature is identified by its region in the first frame.
Then apply the robust factorisation [5] to the tracked 2D features of each region
separately. Check if there is a correct dominant 3D motion in a region. Select
the correct region having the least motion error. Use this region as the seed and
grow it by aggregating in the neighbouring regions those points that have similar
3D motion. Stop at motion borders, remove the aggregated features, then iterate
the procedure until no more correct region is available.

The factorisation method of Hajder et al. [5] is a robust procedure based on
the Least Trimmed Squares [8]. It can find dominant 3D motion in presence of
noise and a large amount of outliers, by detecting and discarding the outliers.
For the details, the reader is referred to the paper [5]. Details of other parts of
the proposed segmentation approach are given below. In the end of this section,
we summarise the algorithm.

3.1 Selecting Region with Least Motion Error

The tracked points of a region are processed by the robust SfM algorithm [5]; the
outliers are detected and removed from the measurement matrix. The remaining
data can potentially represent a correct 3D motion, but there is no guarantee for
that. When the algorithm [5] has been applied to every region of the first frame,
we need a measure of motion error to be able to compare the regions and select
the most promising one. The motion error for a region is obtained as follows:

1. Select randomly four points from the set of the region’s features.
2. Calculate motion and structure by factorisation.
3. Normalise all base vectors. Replace the third element of each base vector by

its absolute value because of reflection. Rotate the base vectors: let the base
vectors of the first frame be parallel to [1, 0, 0]T and [0, 1, 0]T vectors.

4. Create a concatenated vector by concatenating the base vectors of the camera
planes.

5. Repeat steps 1–4.
Steps 1–5 yield two concatenated vectors.

6. Calculate the norm of the difference between the two concatenated vectors.
Divide the difference by the number of the base vectors.

7. Repeat 20 times steps 1–6.
8. Calculate the error as the average of the 20 norms obtained.

In [5], the above motion error is analysed both theoretically and experimentally.
An expression is derived for the mean of the squared difference between two
random vectors on a semi-sphere. In this model, for infinitely large noise the
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expected value of the error is 1.5. Tests on simulated data with different levels
of noise confirmed that the error tends to 1.5 as noise grows. Figure 1 shows
the plot of the average square error versus the noise level. (The horizontal axis
is 100r/R, where R is the size of the synthesised moving object, and r is the
variance of the Gaussian noise.) As noise grows, the error increases, then levels
off at a value close to 1.5. The motion data becomes random; the base vectors
of the frames spread randomly over a semi-sphere of unit radius.

Fig. 1. Errors of motion estimation versus 2D noise level

In the proposed segmentation algorithm, we use the above analysis to decide
if the motion of a region is correct : If the motion error is below a threshold Terr,
the feature points belong to the same moving object. In the tests below, we set
Terr = 0.5. A motion error value is obtained for each region, and the region with
the smallest error is selected as the seed.

3.2 Finding Points with Known Motion

After a correct seed motion has been selected, we try to extend it to the points
of the neighbouring regions. In this section we show how to determine if a fea-
ture point is moving according to a known 3D motion. Due to the ambiguity
of factorisation, this problem is not trivial. Given a measurement matrix W ,
factorisation yields a 3D motion matrix and a 3D structure matrix:

W = (M̂Q)(Q−1Ŝ), (4)

where M = (M̂Q) represents the 3D motion and S = (Q−1Ŝ) represents the
3D structure. The factorisation is ambiguous: the formula described in section 2
provides a correct result, but this result is not unique. If the coordinate system
of the structure is rotated by a matrix A, the motion vectors by AT , where
A is an Euclidean transformation matrix (AAT = I), then W = (MAT )(AS)
is also a correct factorisation. It can be proved that if rank(S) = 3, then all
possible factorisations can be written in the form of W = (MA)(AT S). (See
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appendix A for a proof.) We have a correct 3D motion matrix M and we would
like to separate the feature points with this motion from other feature points.
The segmentation process is based on the error value of a feature. This error,
εp, is different from the motion error discussed in section 3.1. For better clarity,
we will call εp the incoherence value. It is defined as follows. Let wp be the pth

column of the measurement matrix. wp contains the tracked 2D coordinates of
a feature point over all frames. According to motion M , the 3D coordinates of
the pth point can be estimated by the least square method: ŝp = M †wp. The 2D
coordinates are given by ŵp = MM †wp. The error value εp is determined as

εp = ‖wp − ŵp‖ = ‖(E − MM †)wp‖ (5)

The incoherence εp is essentially the reprojection error of point p for motion M .
It has the beneficial property of being invariant to Euclidean transformations of
the motion matrix. In appendix A, we prove that Tomasi-Kanade factorisation
is ambiguous up to an Euclidean transformation. Therefore, if M is a correct
motion matrix and A is orthogonal, then M̃ = MA is also a correct motion
matrix. The error value ε̃p according to the transformed motion matrix M̃ is
equal to εp:

ε̃p = ‖(E − MA(MA)†)wp‖ = εp, (6)
because (MA)† = AT M †, as shown in appendix B.

3.3 Summary of Proposed Algorithm

The main steps of the proposed 3D motion segmentation algorithm are as follows:

1. Tracking. Compute a dense feature point set and track the features over
the sequence. Divide the first frame into regions. Identify each feature by its
region in the first frame.

2. Computing motion errors. For each region,
(a) detect outliers by the algorithm [5] and discard them from the measure-

ment matrix;
(b) calculate motion error according to section 3.1.

3. Selecting correct seed region. Select the region with the minimal motion
error. If this minimal error exceeds a pre-defined limit (Terr = 0.5), stop
the algorithm and indicate that there is no more correct 3D motion in the
sequence. Otherwise, calculate the motion matrix M for the points of the
selected region.

4. Calculating incoherence values. For each region,
(a) detect outliers and discard them;
(b) for each point, calculate by (5) its incoherence value with respect to the

motion matrix M ;
(c) calculate the average incoherence for the region;
(d) create an incoherence map whose pixels represent the normalised inco-

herence values of the regions.
5. Growing the seed region. Grow the seed in the incoherence map by

aggregating the connected pixels with similar incoherence values.
6. Iterating the procedure. Remove the feature points of the segmented area

from the initial dataset, then go to step 2.
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4 Experimental Results

The proposed 3Dmotion segmentation algorithm was tested both on synthetic and
real video sequences. In all cases, feature points were detected in the first frame by
the well-known KLT feature (corner) detector [11]. Then a simple template match-
ing method (shift-corrected SSD) was used to track the points. When setting the
parameters of the algorithms, we tried to obtain as many tracks as possible, at the
expense of higher possibility of incorrect or lost tracks. This was done for two rea-
sons: (1) One needs dense features for a good segmentation; (2) We wanted to test
the robustness of the method against a large number of outliers.

Fig. 2. First and last frames of synthetic sequence

4.1 Test on Synthetic Sequence

The first test sequence consists of a cube and a sphere moving (shifting and
rotating) separately against a textured background, all viewed with a moving
camera. That is, the background is dynamic. The first and the last frames of the
sequence are shown in figure 2. The animation was generated by the PovRay
ray-tracer software with a resolution of 1000 × 800 pixels. The sequence consists
of 10 frames. The sphere occludes the cube in all frames of the sequence. Figure 3
shows the 3D motion errors of the regions, computed in step 2 of the algorithm:
the brighter the pixel, the larger the error. If a pixel is white, motion error
cannot be computed because of the lack of features in the region. The locations
of the cube and the sphere in the first frame are visible. The error is high
at the occlusion border because the motion data of the objects are mixed in
the measurement matrix of the factorisation. The motion error is larger at the
background than at the objects because the camera motion is smaller than the
motion of the cube and the sphere. Note that in this case the error map itself
could be used to segment the objects. However, the result improves after using
the incoherence map. Figure 4 displays the incoherence maps w.r.t. the motion
matrices of the cube and the sphere, respectively. The segmented regions are
shown in figures 5 and 6.
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Fig. 3. Motion errors for synthetic sequence

Fig. 4. Incoherence maps for two detected motions. Left: w.r.t. cube motion. Right:
w.r.t. sphere motion.

Fig. 5. Segmentations of incoherence maps

4.2 Test on Real Sequences

The segmentation method was also tested on two real image sequences. The
‘Bear’ sequence (figure 7) was acquired by a 2Mpixel digital camera. The se-
quence has 15 frames. Both the camera and the object are moving. The reso-
lution is relatively high: 800 × 600 pixels. The segmented region of the Bear is
shown in figure 8. The ‘Car’ video (figure 9) shows a car taking a bend. The
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Fig. 6. Segmented regions of cube (left) and sphere (right)

Fig. 7. First and last frames of ‘Bear’ sequence

Fig. 8. Segmented region of Bear
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Fig. 9. First and last frames of ‘Car’ sequence

Fig. 10. Segmented region of Car

quality of the sequence is poor, the resolution is only 320 × 200 pixels, and
the images are noisy. Despite the low quality of the video, the segmentation
algorithm can separate the feature points of the car from the points of the
moving background, as demonstrated in figure 10.

5 Summary and Conclusions

We have presented a novel method for 3D motion segmentation of a sequence
showing multiple moving objects. Compared to the previous methods using rank
estimation, our method has the advantage of being robust and applicable to real
tracking data in presence of significant noise and a large number of outliers.
Compared to the methods by Torr et al. [12], our method has the advantage of
being capable to handle relatively small objects as well. Another positive feature
is that the algorithm has a small number of parameters that are easy to interpret
and set. In particular, we have developed principled methods for estimating and
thresholding the motion error of a region and for determining, in an invariant
way, the feature points whose motion is consistent with a given motion matrix.
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The robustness of the proposed method is due to: (1) robust seed selection
(searching regions containing correct 3D motion); (2) robust coherence measure
that provides a map which is segmented by region growing. The property of
robustness does not come at no cost. Since the robust techniques used at all
critical steps of our approach require multiple testing of the data, the method
needs a significant computational effort; however, this effort is prohibitive neither
for testing nor for application.

We are currently working on quantitative, comparative performance evalua-
tion of the proposed method. At the same time, we would like to extend the
method to articulated, non-rigid objects.

Acknowledgment. This work was supported by the EU Network of Excellence
MUSCLE (FP6-507752).
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A Ambiguity of Factorisation

The Tomasi-Kanade factorisation method factorises the measurement matrix W
into a motion matrix M and a structure matrix S: W = MS, where M =
[MT

1 MT
2 ...MT

F ]T represent the motion data and S contains the 3D coordinates
of the object. Ml is the motion information of the lth frame: MT

l = [iTl , jTl ]. il
and jl are 3D base vectors of the kth image plane. Motion submatrices can be
completed with the third base vector perpendicular to the fist two base vectors
il and jl: M̃l = [iTl , jTl ,kT

l ], where kl = il × jl and M̃ is an orthogonal matrix.
The factorisation of the measurement matrix W is ambiguous. Let us assume

that we have a valid factorisation W = MS. All valid factorisation of W can
be written in the form of W = (MA)(A−1S), if rank(S) = 3. Since MA is a
motion matrix, it must the fulfil the motion constraints. Let MA be denoted by
N = MA = [NT

1 NT
2 ...NT

F ]T . Ñl denotes the completed new motion matrix of
the lth image of the sequence. It is known that Nl = MlA and Ñl = M̃lA. Ñl

is orthogonal, so we have ÑT
l Ñl = AT M̃T M̃A = I. This is true if and only if

AT A = I, because the original completed motion matrix is orthogonal.
The following conclusion is drawn: The Tomasi-Kanade factorisation is am-

biguous up to an arbitrary orthonormal transformation.

B Pseudoinverse of Matrix Product

Given a matrix M , its Moore-Penrose pseudoinverse M † and an orthogonal
matrix A, the task is to determine the pseudoinverse of MA. It is known [1] that
the pseudoinverse of M can be written as

M † = V (V T V )−1(UT U)−1V T , (7)

where M = UV T is a minimal dyadic decomposition matrix M . The dyadic
decomposition of MA is

MA = U(V T A) (8)
The Moore-Penrose pseudoinverse based on dyades can be written as follows:

(MA)† = AT V (V T AAT V )−1(UT U)−1V T = AT M †, (9)

since AAT = I.
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Abstract. Common problem encountered in the analysis of dynamic
scene is the problem of simultaneous estimation of the number of models
and their parameters. This problem becomes difficult as the measure-
ment noise in the data increases and the data are further corrupted
by outliers. This is especially the case in a variety of motion estima-
tion problems, where the displacement between the views is large and
the process of establishing correspondences is difficult. In this paper we
propose a novel nonparametric sampling based method for estimating
the number of models and their parameters. The main novelty of the
proposed method lies in the analysis of the distribution of residuals of
individual data points with respect to the set of hypotheses, generated
by a RANSAC-like sampling process. We will show that the modes of
the residual distributions directly reveal the presence of multiple models
and facilitate the recovery of the individual models, without making any
assumptions about the distribution of the outliers or the noise process.
The proposed approach is capable of handling data with a large fraction
of outliers. Experiments with both synthetic data and image pairs related
by different motion models are presented to demonstrate the effectiveness
of the proposed approach.

1 Introduction and Related Work

In many computer vision estimation problems the measurements are frequently
contaminated with outliers. Thus a robust estimation procedure is necessary
to estimate the true model parameters. In practice, data can contain multiple
structures (models), which makes the estimation even more difficult. In such
case for each structure, data which belong to other structures are also outliers
(pseudo outliers) in addition to the true outliers (gross outliers).

The problem of robust estimation received lot of attention in computer vi-
sion literature. Most works on robust estimation focus on the estimation of a
single model and typically differ in their assumptions, efficiency and capability
of handling different fractions of outliers. With the exception of a few, the prob-
lem of robust estimation of multiple models received notably smaller attention
and several previously proposed methods were either natural extensions of the
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robust techniques used for single model estimation. They proposed to estimate
individual models iteratively or focused more on the model selection issues.

In computer vision community the two most commonly used techniques for
dealing with noisy data and outliers are Hough transform and RANdom SAmple
Consensus (RANSAC) [1] algorithm. In Hough transform multiple models are re-
vealed as multiple peaks in the parameter space. The localization of these peaks
in multi-dimensional space becomes more difficult as the noise and the number
of outliers grow. The RANSAC algorithm, initially introduced for robust esti-
mation problems with a single model, has been extended to the multiple model
scenario. The existing RANSAC approaches differ in the choice of the objective
function used to evaluate each individual hypothesis. The two most commonly
used criteria, which the objective function typically captures are: 1) the resid-
uals of the inliers should be as small as possible and 2) the number of inliers
should be as many as possible. In the standard RANSAC, the second criterion
is applied and hypotheses are ranked by the number of data points within some
error bound, i.e., inliers. The hypothesis with the most inliers is then chosen
as the model and the model parameters are re-estimated with its inliers . The
need for predefined inlier threshold is disadvantageous. Recently in [2] tradi-
tional RANSAC has been augmented by automatic scale (threshold) selection
used to disambiguate the inliers and outliers and the authors have shown that a
significant percentage of outliers can be tolerated. In [3], the author pointed out
that using RANSAC for simultaneous estimation of multiple motions requires
dramatically more samples than that of single motion case. As a result, motions
are usually estimated sequentially to save the computation. However, evalua-
tion of the motions individually violates the assumption that the outliers to the
first motion form a uniform distribution. In the presence of multiple models,
the remaining models serve as pseudo outliers, which are clustered rather than
uniformly distributed. In [4] authors pointed out that clustered outliers are more
difficult to handle than scattered outliers. In the context of structure and motion
estimation, in [5] the author proposed a strategy to deal with multiple models.
The method for determining the number of models was an iterative one and all
the models were considered independently. Recently a novel algebraic technique
was proposed in [6], which enables simultaneous recovery of a number of models,
their dimensions and parameters, assuming that the models can be character-
ized as linear subspaces of possibly different dimensions. The applicability of the
approach has not been explored in the presence of a larger number of outliers.

Outline. In this paper we present a novel robust nonparametric sampling based
method for simultaneous estimation of number of models and model parameters.
This goal is achieved by studying the distribution of residuals for each data point.
The residuals are computed with respect to a number of hypotheses generated in
the sampling stage. We demonstrate that the number of modes in the distribution
reflects the number of models generating the data and show how to effectively
estimate these modes. The presented approach is demonstrated and justified on
synthetic data. Several experiments with estimating multiple motion models on
real data are presented to validate the approach.
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2 The Proposed Approach

The approach described here shares some features of the method proposed in [7],
but differs in significant ways, which enable significant extensions to estimation
of multiple models. In [7] the authors propose a novel MDPE estimator (Maxi-
mal Density Power Estimator), which selects a hypothesis, whose corresponding
density of residuals is maximal, with the mean close to zero. This entails the use
of nonparametric techniques for studying the distribution of residuals of all data
points with respect to individual hypotheses. The number of models can not
be determined in one complete run of RANSAC, since only the best hypothesis
is selected by RANSAC. Schindler and Sutter [8] recently proposed a scheme
that can estimate multiple models simultaneously. The work focuses more on
the model selection issues and criteria, which best explain the data. The asso-
ciated optimization problem which they formulate is an NP-hard combinatorial
problem. Taboo-search is used to find an approximate solution.

Instead of considering the residuals of all the data points per hypothesis, we
propose to analyze the distribution with respect to all the hypotheses for each
data point. Subsequent analysis of this distribution enables us to estimate the
number of models as well as the parameters of the correct hypothesis consistent
with the data points. First, for the simplicity and clarity of the notation, we
will demonstrate the technique on a simple line fitting problem. Later on we will
present the applicability of the method to the problem of estimation of multiple
motions and multiple 3D planar structures from correspondences between two
views.

Let N be the number of data points xi ∈ �n corrupted by noise. The available
measurements then are

xi = x̃i + δx i = 1, . . .N.

Suppose that these data points are generated by multiple linear (or possibly
non-linear) models, with parameters v, such that each xi belongs to at least one
model. In linear case this constraint can be expressed algebraically as

(vT
1 xi) . . . (vT

j xi) = 0 j = 1, . . .D

where D is the number of models. Our goal is to estimate the number of models
D as well as their parameters in case the data points are noise and further
corrupted by a significant portion of outliers.

In the manner similar to the RANSAC algorithm, in the first stage the initial
set of hypotheses (values of parameters vj) is generated by selecting minimal
subsets of data points needed to estimate the model parameters. Let M be the
number of hypotheses obtained in the sampling stage hj; j = 1 . . .M . Instead of
studying the distribution of N residuals per hypothesis as in [7] when trying to
determine the threshold for inlier classification, we propose to study the distrib-
ution of M residuals for each data point xi. We will show that this distribution
reveals the presence of multiple models and further demonstrate how to estimate
their number and their parameters.
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The rationale behind this choice is the following: when many samples are
drawn from data containing multiple models, for each model, there will be a
subset of samples which consist of only points belonging to it (inliers). For in-
stance suppose that we are given data generated by three models, where the
percentage of inliers for each model is 33%. If one (minimal) sample needed
to estimate a hypothesis comprised of 4 points, then the probability that the
sample is outlier free for one model is 0.334 = 0.012. Given 3000 samples, the
expected number1 of outlier free samples is 0.012 × 3000 = 36. Since the points
used to calculate the hypotheses come from the same model, hypotheses pa-
rameters vj estimated based on them will be close and will form a cluster in
the hypothesis space. The clusters of hypotheses will have similar behavior with
respect to a particular data point xi, in the sense that the residuals of xi with
respect to the cluster of hj ’s will be similar. The samples which contain outliers
would also generate hypotheses, whose residuals will be randomly distributed
in the residual space. As a result, the distribution of residuals for each data
point will have peaks (modes) corresponding to the clusters of hypotheses. For
instance, Figure 1(c) shows that a residual distribution for a bi-modal data set
has two strong peaks. The similar idea of search for clusters of hypotheses is also
the basis of Randomized Hough Transform [9]. In that case however the search
for clusters proceeds in often multidimensional parameter space as opposed to
residual space and hence is known to suffer from typical shortcomings of Hough
Transform methods (e.g. localization accuracy, resolution and efficiency).

The observations outlined above give rise to the following four-step sampling
based method for estimating of multiple models in the presence of a large number
of outliers.

Algorithm 1. Multiple Model Estimation
1. In the first stage M hypotheses are generated. The parameters of the hypotheses

models are estimated from a minimal number of data points randomly drawn from
the data.

2. For each data point xi, compute its residuals rj
i for j = 1 . . . M with respect to all

the hypotheses.
3. The number of models D is estimated by determining the number of modes in

residuals histograms of each data point. Final number is the median of all the
estimates.

4. For each hypothesis, the correct cluster of model hypotheses is then identified.

In the following section we will demonstrate the individual steps of the pro-
posed method in two simple examples. The first set of data points is generated
by two parallel lines, each with 50 points corrupted by Gaussian noise N(0, 0.5),
10 random points are added as outliers. The second set of data points contains
three parallel lines, each with 50 points corrupted by Gaussian noise N(0, 0.5).
Figures 1(a) and 1(b) show the two configurations.
1 The number of outlier free samples obeys a binomial distribution, the probability of

success is the probability that a sample is outlier free.
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Fig. 1. (a) and (b): the first and second data. (c) and (d): residual distribution of point
from the first and second data.

2.1 Model Hypothesis Generation

Same as the standard RANSAC scheme, model hypotheses are computed using
a minimal set of data points required to estimate the model2. The number of
samples to be drawn is related to the percentage of outliers and the desired confi-
dence of outlier free sample. The higher the outlier percentage, the more samples
needed to ensure that a cluster of hypotheses will be generated. In RANSAC
framework the number of required samples can be estimated theoretically as-
suming a known percentage of outliers ε and the desired probability ρs that the
samples include at least one outlier free sample, because of the following relation:

ρs = 1 − (1 − (1 − ε)p)m (1)

where m is the number of samples and p is the number of points per sample
(typically the minimal number of points needed to estimate the hypothesis). For
the proposed approach, a set of outlier free samples is needed to form a mode
(cluster) in the residual space. Therefore, we are interested in the probability ρ
that at least K outlier free samples are included among m samples:

ρ = 1 −
K−1∑
i=0

pm
i = 1 −

K−1∑
i=0

(
m
i

)
(1 − ε)ip(1 − (1 − ε)p)m−i (2)

where the term in the summation pm
i is the probability that exactly i samples are

outlier free in m samples. Equation 1 is a special case of Equation 2 for K = 1.
In the standard RANSAC, Equation 1 is typically used to obtain a closed form
solution for the required number of samples M :

M =
⌈

ln(1 − ρ)
ln(1 − (1 − ε)p)

⌉
(3)

needed for a desired confidence ρ. Using Equation 2 we can obtain the required
number of samples, by computing how ρ changes while varying m for a desired

2 For instance, the minimal number is 2 for line fitting, and 4 for estimating inter-image
homography.
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K. Let’s consider an example of estimating two homographies with the same
number of supporting features with 20% gross outliers (i.e. 40% are valid for
each motion), p = 4 in this case and ε = 0.6 for each individual homography. Let
assume that we need K = 50 outlier free samples, this is much more than enough
to form a evident peak. We will see that the number of samples required would
still be low for such a rigid requirement and with 2500 hypotheses samples, the
probability would be:

ρ = 1 −
50∑

i=0

(
2500

i

)
(1 − 0.6)4i(1 − (1 − 0.6)4)2500−i = 0.96

For varying m, the confidence ρ is shown in Table 1. Thus the required number
of samples M can be obtained based on the table.

Table 1. The probability ρ for a given number of samples m

m 2000 2100 2200 2300 2400 2500 2600 2700
ρ 0.53 0.67 0.78 0.87 0.92 0.96 0.98 0.99

For example given 2700 samples, the probability that both homographies have
at least 50 outlier free samples would be 0.99×0.99 = 0.9801. In [3], Tordoff and
Murray have shown that if RANSAC is used to estimate two motions simulta-
neously, the required number of samples increases dramatically over the single
motion case. According to [3], to estimate two homographies in this example,
the probability ρm that a desired sample is obtained in m samples is:

ρm = 1 − (1 − 0.540.540.88)m

which can be simplified to be:

ρm = 1 − (1 − 0.440.44)m.

The above expression captures the fact that a desired sample should contain
4 inliers of one homography and 4 inliers of the other homography simultane-
ously. In this case, 6000 samples are needed for 98% probability that a desired
sample is included. On the other hand, the proposed algorithm can achieve the
same probability with much less (2700) samples. The reduction of the number
of samples is even more when the outlier percentage is higher.

One may argue that running RANSAC sequentially will be much more effi-
cient. It has been observed that the theoretical number of samples is usually not
sufficient for RANSAC. This is partly due to the fact that RANSAC needs sam-
ples that are not only outlier free but also well distributed. For example when
doing line fitting(p = 2), it’s desirable that sampled points are well separated
for better signal to noise ratio. Consequently, the actual number of samples for
RANSAC can be 10 times as many as the theoretic number, observed in [3]. In
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our approach the theoretical number of samples is adequate, since we explicitly
require a set of outlier free samples of a particular size. Also note here we are
referring to the case when only one model is to be estimated by RANSAC. Se-
quential RANSAC procedures need to be run to estimate multiple models, let
alone the fact that this is only an efficient approximation of the simultaneous
estimation of multiple models.

Our experiments showed that doing RANSAC sequentially will not necessarily
require less samples as demonstrated in Section 3.1. One reason is that for data
with multiple structures, the set of samples will simultaneously contain outlier
free samples for each structures. For example, assuming we have a data which
consists of two equal lines and 50% outliers, if 300 samples (p = 2) are drawn
from it, we can expect about 20 samples from the first line and 20 samples from
the second line. The proposed method utilizes both sets of outlier free samples.
While for RANSAC, only outlier free samples from one line are considered and
the others are discarded. The second line has to be estimated by another run of
RANSAC by generating a new set of samples. In fact, the number of samples
were always on the order of 2000 throughout our experiments even though the
data were quite challenging.

2.2 Residuals Analysis

With M hypotheses generated, M residuals can be computed for each data
point. For a general linear model the residual of a data point xi with respect
to the model vj is (rj

i )
2 = (vjT

i xi)2. For line fitting examples the residuals are
geometric distances between the points and the lines hypotheses. The residual
of ith point with respect to the jth line is:

rj
i =

|ajxi + bjyi + cj |√
a2

j + b2
j

(4)

where vj = [aj , bj , cj ]T are the line parameters and xi = [xi, yi]T is the data
point. Then the residual histogram of each data point denoted as fi can be ob-
tained for any point xi, i = 1, . . . , N . As mentioned before, hypotheses estimated
based on inliers to one model contribute to a peak (mode) in the histogram. This
is demonstrated by the examples in Figure 1(c) and 1(d): there are two strong
peaks in the residual histogram of one point in the first data set which contains
two models. For a point in the second data set containing three models, three
strong peaks stand out in its histogram of residuals.

One thing worth mentioning is that the number of residual distributions to
be studied in our approach is N , whereas M residual distributions need to be
studied in RANSAC framework [2]. When percentage of outliers is high (which
is often the case in multi-modal data), M � N to guarantee outlier free sample.
Thus our approach is computationally more efficient in the residual histogram
analysis stage. Furthermore the number of data points is usually limited, which
might cause a poor estimate of the residual distribution per hypotheses as done
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in [2]. In our case the large number of hypotheses makes the approximation of
residual distribution for each point feasible and more accurate.

2.3 Estimating the Number of Models

Since one mode corresponds to one model, the number of models can be esti-
mated by identifying the number of modes in the residual histograms. While
this is straightforward for the data in Figure 1(a) and 1(b), it’s not easy for
more noisy data containing many outliers. Figure 2(a) shows the residual his-
togram of a data point shown in Figure 4(a), where there are 3 models and 50%
gross outliers. Identifying the modes which correspond to models requires careful
treatment.

One possibility would be to employ one of the standard techniques for non-
parametric probability density estimation, such as the Mean shift algorithm
introduced to the vision community in [10]. The basic premise of the method
is the estimation of the mean shift vector, which locally points in the direction
of the maximum increase in the density and has been shown to converge to the
modes. Both [2] and [11] pointed out some difficulties with the method in case of
multi-modal data, as well as sensitivity of the mean shift algorithm with respect
to the choice of bandwidth (size of the window) parameter. A tight bandwidth
makes it very sensitive to local peaks, whereas correct modes would be missed
with large bandwidth. This in particular is the case in our scenario, where the
histograms contain many spurious peaks due to the presence of a large percent-
age of outliers. Since in our case we are limited to the analysis of 1D distributions
of residuals, we have developed an alternative iterative procedure for detecting
the models and disambiguating the correct modes from spurious ones. The mode
detection method is summarized below:

Algorithm 2. Mode detection
1. In the first stage, the histogram is smoothed with a narrow window and local

maxima (modes) and minima (valleys) are located.
2. Remove he spurious weak modes and valleys, so that only single local minimum

valley is present between two modes and only one local maximum mode is presents
between two valleys.

3. Choose the weakest unlabeled mode and measure its distinctness. If the mode is
distinct, then it is labeled and added to the list of modes; otherwise it is marked as
spurious and removed. If there are no more unlabelled modes, stop the procedure.
Otherwise, go to step 2.

The distinctness measure is defined as τ = f(mode)/f(shallow valley), where
f(i) is the histogram value of the ith bin. Let’s look at the two left local modes
of Figure 2(b), which is the smoothed result of Figure 2(a). Note that the true
mode is not distinct enough from its valley, which is a spurious valley. Checking
its distinctness directly would result in removing this correct mode. However,
our approach guarantees that the spurious mode will be processed before the
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true peak. Since the spurious mode is not sufficiently distinct (τ less than some
threshold Tτ ) from its left (shallow) valley, it is removed in Step 3 of the proce-
dure. Then the correct mode will obtain deeper valley after Step 2, enabling it to
pass Tτ . Note that it is important that shallow valley is used for the comparison.
The spurious modes close to the correct strong mode usually have deeper valleys
of much smaller value. Only their shallow valleys reflect the fact that they are
spurious modes.
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Fig. 2. Identifying the number of models

From each residual histogram fi, we obtain an estimate di of the number of
peaks and hence the number of models. Note that the residual histograms are
different for different points and it’s likely that di will be different for different i.
Figure 2 plots the estimated di, i = 1, . . . , 300 for each of the 300 data points in
Figure 4(a). Most of the estimated numbers are equal to 3. The median of those
numbers dm = median(di) provides a reliable estimate of the number of models.

2.4 Finding the Correct Hypothesis and Models Parameters

Once the number of models has been obtained, we select a subset S of the data
points. S = {xi|di = dm}, which returned the correct number of models. Among
them we select a point xs whose histogram fs has the strongest peaks

s = arg max
j

dm∏
i=1

fj(peak(i)) (5)

where fj(peak(i)) is the ith peak’s magnitude of the residual histogram of jth

point in S, xs and fs are then used to identify the correct models hypotheses.
For each identified mode, the corresponding hypothesis and consequently the

model is determined as following: we first locate a subset of hypotheses whose
residuals rj

s correspond to the mode. We know that a cluster of hypotheses
corresponding to a true model will be included in it, but it may happen that
some additional random hypotheses also have the same residuals. Then, the
problem is how to identify the good hypothesis from the chosen hypotheses
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subset. One possibility would be to apply a clustering method in the parameter
space in the spirit of Hough Transform. This would result in a more efficient
approach than Hough Transformation applied to the original problem, since
only a subset of hypotheses needs to be checked. Yet we find a more efficient
way, by searching for the clusters in the 1D residual space and by exploiting the
distribution of residuals of another data point. Figure 3(a) illustrates the idea.
The residuals (distances) of xs and a set of line hypotheses are approximately
the same, including correct hypotheses (solid lines colored blue) and spurious
hypotheses (dotted lines colored red). To disambiguate them, we choose another
random point xi, i �= s and study its residual distribution. Clearly, residuals of
xi will be different for the chosen hypotheses, but the clustered hypotheses will
still have roughly the same residuals, thus forming a peak in the new residual
distribution. The hypothesis which corresponds to the center of the peak will
be selected as the model. The results of the synthetic examples are shown in
Figure 3(b) and 3(c), respectively. Note that we don’t need to identify inliers
throughout the procedure, thus avoiding the need of inlier threshold.
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Fig. 3. Identifying the model parameters

3 Experiments

In order to assess the proposed method, we carried out various experiments. Line
fitting was tested first, followed by motion estimation problem from two view
correspondences, both with synthetic and real data.

3.1 Multiple Line Fitting

We carried out experiments on the line fitting problem with a number of data
configurations, by varying the number of lines, percentage of outliers and noise
level. Four experiments are shown in Figure 4. The image sizes are 100 × 100.
The ith line has ni data points, perturbed by Gaussian noise N(0, σ2). κ points
are uniformly distributed within the image as outliers. Then we can compute the
percentage of outliers for ith line (including gross and pseudo outliers), denoted
as εi.
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(a) Three parallel lines, ni = 50, σ = 1, κ = 150; εi = 83.3%.
(b) Outlier form a cluster, ni = 50, σ = 5, κ = 50; εi = 50%.
(c) 6-lines, ni = 25, σ = 1, κ = 50; εi = 87.5%.
(d) 6-lines, ni = 25, σ = 0.3, κ = 50; εi = 87.5%.

Our experiments showed that the method can tolerate a high level of outliers
and a significant level of noise. For instance, εi = 87.5% for one line in Fig-
ure 4(c). The noise standard deviation is large, 1% of image size for most tests.
Only when data are rather complex (6 lines in the image), did our approach
not succeed to fitting all the lines, yet 3 of them still got detected. When data
points are less noisy, more lines can be detected. As Figure 4(d) shows, our
approach correctly estimated the number of models and 5 lines were correctly
estimated, when σ = 0.3. This is roughly equivalent to 2 pixel gaussian noise in
a typical image of size 640. Another interesting observation is that our approach
is fairly robust to a cluster of outliers, as Figure 4(b) shows. As people have
already noticed [4], concentrated outliers are more difficult to handle than scat-
tered outliers. According to the result of [7], existing robust estimators including
RANSAC are likely to fail in this case. Figure 4(b) shows that the correct line
can still be identified. Our approach predicted that there are two models in data,
and detected one spurious line. This is actually not very surprising, since the
cluster of outliers can be considered as a degenerate line.
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Fig. 4. The line fitting experiments, inliers are denoted as red ’.’, outliers are denoted
as blue ’x’
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We also want to mention our alternative experiments which used RANSAC
sequentially to address the problem. Because the outlier ratios are high, each run
of RANSAC required considerable number of samples. For example, in the case
of Figure 4(c), even though 1000 samples were used for each run of RANSAC
(3000 samples were used for estimating 3 lines), we still could not get consistent
correct results. Figure 5(a) shows a typical result incorrect result, while the pro-
posed method correctly returned 3 lines using 3000 samples. The inlier threshold
was set optimally for the RANSAC procedure. As for the case of Figure 4(d),
running RANSAC sequentially gave the result shown in Figure 5(b). Not all the
lines were correctly estimated. When outliers are clustered, sequential RANSAC
returned wrong results even though the number of samples is the same as our
approach. Figure 5(c) shows the result when the number of models was set to
be 1. Figure 5(d) shows the result when the number of models was set to be 2.
These instances were solved correctly by our approach.

3.2 Two View Correspondences

Synthetic data was tried first. The original data lie in 3D space, containing two
planes, each with 40 points randomly distributed on that plane. Then they are
projected into two views, with image sizes around 500. The points coordinates
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Fig. 5. The line fitting experiments using RANSAC sequentially
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(a) One view of original data. Data
points from two planes are represented
as ’+’, and colored blue and green re-
spectively. The outlier points are repre-
sented as ’x’ and colored red.
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(b) Identified inliers to each model are
denoted by ’♦’. Only one data point
close to the border of the two planes is
labeled incorrectly.

Fig. 6. The experiment with homography model

(a) One view of the image pair. Data
points colored green. The outlier points
are colored red.

(b) Identified inliers to each model are
denoted by ’♦’, and colored blue and
green, respectively.

Fig. 7. The experiment with homography model. Two homographies are correctly es-
timated.

are corrupted by Gaussian noise of 0.5 pixels, and 20 outliers are randomly
distributed in the image plane. As shown in Figure 6(b), both the number of
homographies and their parameter are estimated correctly.

The approach was also applied to real images. In one experiment, we tried to
identify planar surfaces in the image by estimating homographies. 60 correspon-
dences belonging to two plane were manually selected. 40 random outliers were
added. As Figure 7 shows, two planes are identified and their inliers are marked.
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(a) (b) (c)

Fig. 8. Motion segmentation result. Identified inliers to each model are denoted by ’♦’
and ’�’, and colored blue and red, respectively. Identified outliers are denoted by red
‘x’. (a) Affine segmentation of a car moving sequence. Note one of the correspondences
is labeled as outlier because its position is not correct. (b) 2D translational segmen-
tation a car leaving a parking lot. (c) 2D translational segmentation of head moving
sequence. 20% random correspondences are added as outliers. The segmentation result
is unaffected by the outliers.

In another experiment, we tried motion segmentation for three sequences down-
loaded from http://www.suri.it.okayama-u.ac.jp/e-program-separate.html.
Figure 8 shows the segmentation results using 2D translation or affine model.
Both the number of models and model parameters were correctly estimated for
each sequence.

4 Conclusion

In this paper, we proposed a robust estimation scheme for multi-modal data with
outliers. Base on the analysis of the residuals distribution per individual data
points with respect to a set of hypotheses (generated by RANSAC-like sampling
process), we can simultaneously estimate the number of models and parameters
of each model. An iterative technique is developed to robustly identify the correct
modes in the residual histogram, which is then used to determine the number of
models. Model parameters are recovered from cluster in residual space instead
of parameter space as done by Hough Transform, so the proposed approach will
not suffer from the common difficulty of Hough Transform. Our approach was
justified by extensive experiments on both synthetic and real data. Currently, we
are investigating the structure and motion estimation problem with the proposed
framework.
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Abstract. Articulated motions are partially dependent. Most of the
existing segmentation methods, e.g. Costeira and Kanade[2], can not be
applied to articulated motions.

We propose a novel algorithm for articulated motion segmentation
called RANSAC with priors. It does not require prior knowledge of the
number of articulated parts. It is both robust and efficient. Its robustness
comes from its RANSAC nature. Its efficiency is due to the priors, which
are derived from the spectral affinities between every pair of trajectories.

We test our algorithm with synthetic and real data. In some highly
challenging case, where other motion segmentation algorithms may fail,
our algorithm still achieves robust results.

Though our algorithm is inspired by articulated motions, it also ap-
plies to independent motions which can be regarded as a special case and
treated uniformly.

1 Introduction

Motion segmentation has been an essential issue in feature-based dynamic scene
reconstruction. The problem can be described as the following: given trajectories,
group those belonging to the same motion.

Lots of work has been done for independent motion segmentation[5][6][2] [7][8]
[10] while little attention has been paid to articulated motion segmentation even
though articulated motions involves one of the most interesting motions, human
motions. With a proper segmentation, articulated motions can be recovered with
the same ease as independent motions (Yan and Pollefeys[16], Tresadern and
Reid[17]).

A naive thought may be to apply independent motion segmentation algo-
rithms to the articulated case. However, the motions of two linked parts are
partially dependent. The shape subspace of one part is not orthogonal to that
of its linked part(s). Segmentation algorithms assuming independent motions
generally can not be applied to articulated motions.

We propose a novel algorithm for articulated motion segmentation called
RANSAC with priors. It does not require prior knowledge of the number of ar-
ticulated parts. It is robust and efficient. Its robustness comes from its RANSAC

R. Vidal, A. Heyden, and Y. Ma (Eds.): WDV 2005/2006, LNCS 4358, pp. 75–85, 2007.
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nature. Its efficiency is due to the priors, which are derived from the spectral
affinities between every pair of trajectories.

We test our algorithm with synthetic and real data. In some highly challenging
case, where other motion segmentation algorithms may fail, our algorithm still
achieves robust results.

Though our algorithm is inspired by articulated motions, it also applies to
independent motions which can be regarded as a special case and treated
uniformly.

1.1 Previous Work

Lots of work has been done for motion segmentation based on the factorization
method proposed by Tomasi and Kanade[12]. We will discuss the most prominent
ones at this section and point out why they are not suitable for articulated motion
segmentation.

Boult and Brown[5] recursively segment tracks into linearly independent mo-
tion subspaces. For articulated motions, the motion subspaces are dependent
(Yan and Pollefeys[16]), which makes the criteria for segmentation invalid.

Costeira and Kanade[2] proposed a very different approach. It constructs a
shape interaction matrix whose zero and nonzero entries provide strong hints
for feature grouping. Later work of Weiss[10] compared several segmentation
algorithms that use eigenvectors of affinity matrices for grouping and drew a
unifying view of all these methods including the one in Costeira and Kanade[2]
which turns out to have a root in spectral clustering.

However, articulated motions are not independent. The shape subspaces are
not orthogonal to each other, which breaks the assumption of these approaches
and makes the shape interaction matrix or the affinity matrix not sparse.

Another different motion segmentation approach is from Vidal[13][14][15]
which propose an algebraic framework called GPCA for subspace clustering.
It has been applied successfully to simple articulated motions (Yan and Polle-
feys[16]).

But GPCA requires that the sample size must grow exponentially with the
number of subspaces. As the number of articulated parts increases, the expo-
nentially increasing number of trajectories required by GPCA proves to be its
Archilles’ heel.

Zelnik-Manor and Irani[9] briefly discusses the segmentation of partially de-
pendent motions. They construct an affinity matrix similar to those discussed
in Weiss[10] and use an approach similar to Kanatani[8] to separate the data.

Essentially Zelnik-Manor and Irani[9] follows the segmentation approaches for
independent motions and demonstrates that it may work for partially dependent
motions as well. However, when the dependency between motions gets higher
and the number of motions increases, it will face the same difficulties as those
segmentation approaches for independent motions: the criteria for segmentation
becomes ambiguous.

Our approach differs from the above work in that it adopts a RANSAC ap-
proach, which is known for its robustness, and uses a constructed affinity matrix
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to provide priors for random sampling. The major advantages are: it does not
require prior knowledge of the number of motions; it is efficient and robust;
and it provides a unified framework for motion segmentation for not only par-
tially dependent motions but also independent motions. Like previous work, our
approach assumes orthographic or weak camera projection.

The following sections are arranged in such a way: Section 2 describes articu-
lated motion subspaces and the shape interactions of two linked parts; Section 3
describes how to derive the prior of how likely two trajectories belong to the same
motion and discuss our segmentation approach, RANSAC with priors; Section
4 demonstrates RANSAC with priors using two experiments; Section 5 draws a
conclusion and discusses future work.

2 Articulated Shape Subspaces and the Shape Interaction

We will discuss in detail the shape subspaces of articulated motions with com-
parison to those of independent motions. Then we will discuss how the shape
subspaces interact in articulated motions.

2.1 Articulated Shape Subspaces vs. Independent Shape Subspaces

The articulated motion subspace is a set of intersecting rigid motion subspaces
(Yan and Pollefeys[16]). They are not orthogonal to each other as independent
motions are. We will show that by the following canonical factorization forms of
both independent motions and articulated motions.

– Independent motions

W = (R1|T1|R2|T2|...|RN |TN )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1
1

S2
1

...
Sm

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

Each motion has its own rotation and translation while the shape matrix
consists of columns belonging to orthogonal shape subspaces.

– Articulated motions
There are two cases for articulated motions.
i. Two parts connected by a joint

W = [R1 R2 T ]

⎡
⎣S1 0

0 S2
1 1

⎤
⎦ (2)
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Both motions share a translation T which is the motion of the joint, while
two shape subspaces have a one-dimensional intersection.
ii. Two parts connected by an axis

W = [r1 r2 r3 r′2 r′3 T ]

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 x2
y1 0
z1 0
0 y2
0 z2
1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

where R1 = [r1 r2 r3] and R2 = [r1 r′2 r′3]
Both motions share a translation T and a rotation axis. Two shape subspaces
have a two-dimensional intersection.

2.2 Shape Interaction of Articulated Motions

Each trajectory has a corresponding column vector in the shape matrix which
is the right most matrix in Equation (1), (2) and (3).

For independent motions (Equation (1)), column vectors of different shape
subspaces have zero inner products while column vectors of the same subspace
generally do not. The shape interaction matrix (Costeira and Kanade[2]) consists
of these inner products of every pair of trajectories, so it can be used to group
features of the same motion.

For articulated motions (Equation (2) and (3)), though the shape subspaces
are not orthogonal, column vectors of the same shape subspace generally have
larger inner products than those from different shape subspaces in magnitude.
We will show that in the following. The first shape subspace in Equation (2) can
be represented by a base (e1, e2, e3, e7) where ei = [0, ..., 1, ...0]T with i indicating
the position of 1. Similarly, the second shape subspace can be represented by
a base (e4, e5, e6, e7). It is easy to see that the inner product of column vectors
from different shape subspaces has only one coefficient not canceled out while
that of column vectors from the same shape subspace has four. This observation
implies that the magnitude of the former is generally smaller than that of the
later. A similar analysis applies to Equation (3).

So the inner products of column vectors may tell us how likely two trajectories
are of the same motion. This key observation is what RANSAC with priors builds
upon. In the following section we will describe how to estimate the priors with
regard to how likely every pair of trajectories belong to the same motion and
present our segmentation approach, RANSAC with priors.

3 RANSAC with Priors

In this section, we will first describe how to build the priors to guide RANSAC.
Then we will discuss RANSAC with priors.
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3.1 The Prior Matrix

Though the magnitude of the entries in the shape interaction matrix (Costeria
and Kanade[2]) may be used directly for estimating how likely two trajectories
are of the same motion. There is a better way.

The shape interaction matrix is actually an affinity matrix (Weiss[10]). We
adopt a spectral clustering algorithm (Ng. etc.[11]) to analyze the affinity matrix
without carrying out the clustering part. Instead, we build an affinity matrix
from the normalized spectral representations of each trajectory and use it to
estimate the priors of how likely every pair of trajectories are of the same motion.

The procedure is described as followed.

– Build an affinity matrix M from the trajectory matrix W : M = WT W .
– Normalize M into N = D−1/2MD−1/2 where Dii =

∑
j Mij

– Form a matrix Xp×k whose columns are the k dominant egenvectors of N .
– Normalize each row vector of Xp×k. This new matrix is Yp×k. Each row yi

of Y is the normalized spectral representation of trajectory i in Rk.
– Unlike spectral clustering which will cluster yi into different groups at this

step, we compute the affinity between each pair of yi and yj and use it to
build the prior matrix P .

Pij =
2√
π

∫ yiy
T
j

0
e−t2dt (4)

Pij represents the probability of trajectory i belonging to the same motion
as trajectory j.

A few discussions:

– The choice of the number of eigenvectors k. Ideally, k should be the rank
of N . In practice, due to noise, the rank of N can only be estimated. We
may use a model selection algorithm inspired by a similar one in Vidal[15]
to detect the rank.

rn = arg minr

λ2
r+1∑r

k=1 λ2
k

+ κ r

with λi, the ith singular value of the matrix, and κ, a parameter. If the sum
of all λ2

i is below a certain threshold, the estimated rank is zero.
Notice that due to outliers the estimated rank may be larger than the

rank of the motion subspace. However, the spectral affinity turns out to be
not very sensitive to a larger k.

– Any reasonable distribution function may substitute for Equation (4). The
point is to use the spectral affinity to build priors with regard to how likely
two trajectories belong to the same motion.
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3.2 RANSAC with Priors

Pij represents the probability of trajectory (or data) i belonging to the same
motion (or model) as trajectory (or data) j.

We outline our segmentation approach, RANSAC with priors, as followed.

– Form a sample set of k data based on the priors Pij :
1. Randomly choose the first data s1 based on a probability distribution
formed by the sums of each row of the prior matrix. A larger the row sum
indicates that the data is more likely in the same motion as other data.
2. Randomly choose the 2nd to the kth data, s2,...,sk, based on a probability
distribution formed by the priors related to data s1.

– instantiate a model from this sample set.
– Determine the set of data Si that are within a threshold t of the model.
– Repeat this N times. The largest consensus set is selected and the model is re-

estimated using all the points in that consensus set. If the largest consensus
set has a size less than some threshold T , terminate.

– remove the data set Si from the original data and repeat the above to find
a new consensus set and its model until either the data is exhausted or no
more models can be found from the remaining data.

A few discussions:

– The model that we use is the factorization model (Tomasi and Kanade[12])
which states that the trajectories of a full rigid motion generally span a
rank-4 subspace. So k is 4 in our experiments.

– Model selection can be naturally combined with RANSAC with priors to
deal with degenerate shape and motion. This will be discussed in Section 5.

4 Experiments

We test RANSAC with priors in three experiments.
The first experiment consists of a truck sequence with a moving shovel. Con-

nected by an axis, the motion dependency is as high as it can get for articulated
motions. To demonstrate the robustness of our approach, besides those erro-
neous trajectories due to tracking, outliers are created by adding large random
noise (larger than 10%) to some existing trajectories. The prior matrix is shown
in Figure 1. The actual rank of the articulated motion subspace is 6 while the
detected rank is 13 because of outliers and noise. For illustration purpose, the
trajectories have been grouped into the truck body, the shovel and random out-
liers. Notice the priors for random outliers have very small values which makes
them unlikely to be selected into a sample set. And the erroneous trajectories
are rejected when RANSAC with priors tries to find a largest possible consensus
set. 50 sampling times are tried each time to find a largest possible consensus
set from the current data. RANSAC with priors finds 2 motions and terminates
when the largest possible consensus set that it can find has a size 6 which is less
than the threshold T = 8. Those 6 trajectories are some of the erroneous trajec-
tories on the shovel and on the body. The remaining data consist of erroneous
trajectories and the outliers that we add (Figure 2).
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Fig. 1. The prior matrix of the truck sequence with outliers. Lighter color indicates
higher probability.

Fig. 2. (left) RANSAC with priors finds the first consensus set indicated by blue dots.
The orange and light blue dots are the remaining data. The light blue dots are outliers.
The orange dots on the truck body are erroneous trajectories. (right) The blue dots
indicate the second consensus set found by RANSAC with priors. The orange and light
blue dots are the remaining data. The light blue dots are the outliers. The orange dots
are erroneous trajectories.

The second experiment is from a sequence of synthetic data of 4 linked parts.
Each parts has 10 features to represent its 3D shape. Small random noise (less
than 1%) are added to the trajectories. 4 outliers are created by adding large
random noise (larger than 10%) to some existing trajectories.

This experiment is challenging. First, each part has a small number of tra-
jectories which provides too few data for GPCA (Vidal[13]) to work; secondly,
RANSAC WITHOUT priors will require a large number of times of sampling
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Fig. 3. The prior matrix of multiple linked parts with outliers. Lighter color indicates
higher probability.

before it may obtain a valid sample set,i.e. a sample set consisting of trajec-
tories from the same part. In this experiment only 1

4 × 1
4 × 1

4 = 1
64 may be

valid sample sets. In practice, without knowing the number of motions be-
forehand, it is impossible to set a fixed threshold for the number of sampling
times.

However, RANSAC with priors generally gets one valid sample set out of every
three in this experiment. And this rate does not depend on the total number of
motions. It depends on the number of dependent motions. Parts that are further
away generally have much less dependency which make the corresponding priors
very small, thus their trajectories are unlikely to be chosen into a sample set. 50
sampling times are tried each time to find a largest possible consensus set from
the current data in this experiment. The prior matrix of 4 linked parts is shown
in Figure 3. The actually rank of the articulated motion subspace is 13 but the
detected rank is 17 due to outliers. RANSAC with priors finds 4 motions within
the trajectories and the segmentation is shown in Figure 4 with reference lines
representing each part of the object for better illustration. The remaining data
are 4 random outliers after RANSAC with priors can not find any consensus set
of size more than T = 8. The result matches the ground truth.

Last but not the least, we test RANSAC with priors in a more complex sce-
nario. Using our approach, independent motions are only a special case and can
be treated in the same fashion. The prior matrix for two independently moving
articulated objects from a real sequence is shown in Figure 5. Each of these
two articulated objects has two parts. Notice the priors between every pair of
trajectories from different objects are very small. RANSAC with priors is able
to segment 4 motions from these trajectories.
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Fig. 4. The segmentation result of 4 linked parts using RANSAC with priors. Orange,
green, light blue and dark blue indicate 4 parts of the articulated object. 4 Red dots
are the remaining data rejected by the algorithm, which are the added outliers.

Fig. 5. The prior matrix of two independently moving articulated objects. One artic-
ulated object has two parts linked by an axis. The other object has two parts linked
by a joint. Lighter color indicates higher probability.

5 Conclusions and Future Work

We describe and demonstrate a motion segmentation algorithm called RANSAC
with priors. It can segment articulated motions as well as independent motions.
It does not require prior knowledge of how many motions there are. It is both
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efficient and robust. The priors are derived from the spectral affinity between
every pair of trajectories.

Future work will involve combining model selection to deal with degenerate
shape and motion. After having a sample set, we can estimate the model from
several models. Furthermore, with priors, we may even consider forming a larger
size of a sample set. This will not increase the computation too much as compared
to common RANSAC WITHOUT priors because with the help of the priors the
sample set has a far better chance consisting of data belonging to the same
model.

We also plan to apply RANSAC with priors to highly challenging cases of
complex articulated motions like human motions and complex scenes consisting
of partially dependent and independent motions.
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Abstract. This paper addresses the problem of articulated motion tracking from
image sequences. We describe a method that relies on both an explicit parame-
terization of the extremal contours and on the prediction of the human boundary
edges in the image. We combine extremal contour prediction and edge
detection in a non linear minimization process. The error function that measures
the discrepancy between observed image edges and predicted model contours is
minimized using an analytical expression of the Jacobian that maps joint veloci-
ties onto extremal contour velocities. In practice, we model people both by their
geometry (truncated elliptic cones) and their articulated structure – a kinematic
model with 40 rotational degrees of freedom. To overcome the flaws of standard
edge detection, we introduce a model-based anisotropic Gaussian filter. The para-
meters of the anisotropic Gaussian are automatically derived from the kinematic
model through the prediction of the extremal contours. The theory is validated by
performing full body motion capture from six synchronized video sequences at
30 fps without markers.

1 Introduction and Background

In this paper, we address the problem of tracking complex articulated motions, such
as human motion, from multiple camera image sequences using a solely contour-based
approach. Articulated motion tracking has been thoroughly studied in the past few years
using either one or multiple cameras and with or without artificial markers. Monocular
approaches generally require a probabilistic framework such as in [1,2,3] to cite just
a few. It requires prior knowledge: the mapping between articulated-motion space and
image-data space must be learnt prior to tracking. However, learning the entire motion
space of a 40 dof kinematic chain remains an open issue. Other authors have tried to
recover articulated motion from image cues such as optical flow through sophisticated
non-linear minimization methods [4,5].

To overcome the limitations of monocular approaches, methods based on multiple
cameras have been proposed in the literature. These approaches generally use either
image edges or silhouettes [6,7,8,9]. Furthermore, these methods use generic models,
such as superquadrics, quadrics or simple cylinders, to represent body parts. Neverthe-
less, projecting these models onto images and comparing them with contours and/or
silhouettes is not an obvious task. In the case of sharp edges (surface discontinuities)

R. Vidal, A. Heyden, and Y. Ma (Eds.): WDV 2005/2006, LNCS 4358, pp. 86–99, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Articulated-Body Tracking Through Anisotropic Edge Detection 87

(a) (b) (c) (d) (e) (f)

Fig. 1. From left to right: The current model (a) is matched against a set of new images (only one
is shown here) (b). The contours in these images (c) and( d) are extracted using an anisotropic
color Canny filter (c). They are compared with the predicted model contours using the Chamfer
distance (e). Finally, the estimated model is consistent with the new image (f).

there are well documented methods allowing for an explicit (analytic) representation of
the mapping between the object’s constrained (articulated) motion parameters and the
observed image contours [10,11]. However, in the case of human motion tracking, the
task is made much harder by the fact that the human body has few (if any) sharp edges
and its silhouette stems from the projection of smooth surfaces rather than surfaces with
sharp edges. Moreover, the silhouettes used by these methods are often unreliable due
to background substraction problems around moving objects. Due to the lack of robust-
ness of silhouette extraction we propose an approach that solely relies on contours.

For a contour-based approach to be successful the correct detection of object con-
tours in the image is essential. Our approach to improve this contour detection consists
of three steps. Firstly, we model articulated objects such as humans using smooth sur-
faces, namely truncated elliptic cones, as basic primitives which are joined together
to form an articulated structure (Fig. 1.a). Each joint has one, two or three rotational
degrees of freedom. This model allows us to explicitly parametrize the extremal con-
tours of the model, which are the projection of the smooth surfaces onto the image (see
Fig.2), in terms of the articulated structure parameters.

Secondly, we exploit the information provided by the kinematic model to perform a
model-based edge detection. Well known methods such as Canny-Deriche [12], mea-
sure the first-order derivatives in an image. Convolution with Gaussian derivative filters
make the measurement of image derivatives more robust. But the isotropic Gaussian
filtering suffers from a blurring effect. Furthermore, crossing edges are not well de-
tected. To overcome those flaws, the anisotropic Gaussian filter had been introduced
in [13] and a fast implementation is proposed in [14]. Anisotropic Gaussian filtering
smoothes image intensities along the predicted contour directions and computes di-
rectional derivatives across the predicted contours which improves robustness of the
tracker [15]. Furthermore, to ensure optimal use of the available contrast in the image,
color derivatives are applied as proposed in [16]. We combine both anisotropic filtering
and color derivatives (Fig. 1- c,d) to obtain an anisotropic color Canny filter, to arrive
at a final binary edge map (Fig. 1-e).

Finally, the tracking is performed by minimizing a distance between the predicted
extremal contours and the observed contours. The process consists in minimizing an
error function:
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min
Φ

E(Y, X (Φ)), (1)

where E is a distance function, Φ = (φ1, . . . , φp) is the n-dimensional vector whose
components are the motion parameters, Y is the set of observed image contours and
X (Φ) is the set of predicted extremal contours. Unlike other approaches ([10,7,11]),
where the image contours are computed using standard methods and where the cost
function is computed using the closest image edges, we compute the distance in the
neighborhood of each model body part using the oriented edges obtained above. We
use the chamfer distance to compute the error function. The advantage of the chamfer
distance is that it does not require model-contour to image-contour assignments and its
computation is fast. From the explicit parameterization of the extremal contours, we
derive an explicit formulation of their motion and therefore we consider the distance
function as a differentiable function. As a consequence, the tracking can be considered
as a standard non-linear minimization process.

To summarize (see also Fig. 1): to avoid the use of silhouettes for human motion
tracking, we propose a contour-based approach. The explicit (analytic) parameteriza-
tion of the extremal contours of the articulated body model allows us to perform model-
based edge detection, which is the first contribution of the paper. As a second contri-
bution, we cast the tracking into a minimization problem by considering the chamfer
distance as a differentiable function.

Note that a preliminary version of this work using an ad-hoc kinematic parame-
trization and a background substraction was described in [17]. In [17], we described a
method using silhouettes and a standard edge detector (Canny-Deriche) without taking
advantage of anisotropic filtering of color images. A main drawback of this work is its
dependance on the silhouette estimation which often fails due to background substrac-
tion problems. In this paper we circumvent the errors introduced by flawed silhouette
estimation by introducing a solely edge-based method.

Paper organization. In section 2, we recall the parameterization of extremal contours
and derive their 2-D motion as given in [17]. Taking advantage of this explicit parame-
terization, we introduce the model-based edge detector (section 3). From the explicit
parameterization and the model based detection, we derive a differentiable error func-
tion to perform the motion tracking (section 4). Finally, we discuss the method and
present results in section 5.

2 The Kinematics of Extremal Contours

We perform human motion tracking through a non linear minimization process. To
perform such a minimization, one needs to compute the Jacobian of the error function
or, equivalently, to estimate the motion of model points that reduces the discrepancy
between the model extremal contours and the observed image contours.

Let us denote by x an image point lying onto the extremal contour of a modelled
body part, let x = (x1, x2) be its associated coordinates and let X = (X1, X2, X3) be
its associated 3-D point in the body part frame. Let us also denote Xw the coordinate
vector of point X in the world reference frame: Xw = RX + t, where R (3 × 3
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rotation matrix) and t (translation vector) describe the motion of the body part and are
parameterized by the joint parameters Φ. The motion of point x is, therefore, computed
as follows:

dx

dt
=

dx

dXw

dXw

dt
= JI

(
ṘX + ṫ + RẊ

)
= JI(A + B)

(
Ω
V

)
, (2)

where (Ω, V )� = JKΦ̇ is the kinematic skrew. In the remaining of this section, we
will make explicit each one of the terms in the equation above.

JI describes the classical Jacobian of the projection transformation. We have x =
(x1, x2) = (Xw

1 /Xw
3 , Xw

2 /Xw
3 ), then

JI =
[
1/Xw

3 0 −Xw
1 /(Xw

3 )2

0 1/Xw
3 −Xw

2 /(Xw
3 )2

]
. (3)

JK desribes the classical Jacobian that maps the articulated structure parameters to
the body part velocities (Ω, V )�. One may refer to [18] for further details.

2.1 The Rigid and Sliding Motions of Extremal Contours

The right-hand side of equation (2) is a transformation that allows to determine the
velocity of a point from the motion of the rigid part on which this point lies. When a
point is rigidly attached to the part, this transformation is given by matrix A (see below).
In our case, as explained below, the point slides onto the smooth surface, therefore, there
is a second transformation – matrix B – that remains to be determined.

(a) (b)

Fig. 2. (a) A truncated elliptic cone projects onto an image as a pair of extremal contours. The
2-D motion of these extremal contours is a function of both the motion of the cone and the sliding
of the contour generator along the smooth surface of the cone. (b) With a perspective projection,
the real contour motion differs from the rigid motion in the image.

The rigid motion. The first component is computed by considering the rigid motion
part of equation (2):

ṘX + ṫ = ṘR�(Xw − t) + ṫ = A
(

Ω
V

)
, (4)
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where A is the 3×6 matrix that allows to compute the velocity of a point from the
kinematic screw ((Ω, V )�) of the rigid-body motion:

A = [[t − Xw]× I3×3] . (5)

The notation [m]× stands for the skew-symmetric matrix associated with a vector m.

The sliding motion. We consider the motion of an extremal contour point. Its associated
3-D point lies on a contour generator – the locus of points where the surface is tangent
to the lines of sight (see Fig. 2-a). This tangency constraint writes:

(Rn)� (RX + t − C) = XT n + (t − C)T Rn = 0, (6)

where vector n is normal to the surface at X , and C is the camera optical center in
world coordinates. X belongs to a developable surface, namely the truncated elliptic
cone, parameterized by θ and z:

X(θ, z) =

⎛
⎝a(1 + kz) cos(θ)

b(1 + kz) sin(θ)
z

⎞
⎠ . (7)

Then in equation (6), n = ∂X
∂z × ∂X

∂θ = Xz × Xθ. For any rotation, translation, and
camera position, equation (6) allows to estimate X as a function of the surface parame-
ters. For the truncated elliptic cone i.e. equation (7), X lies on a line and therefore the
extremal contours are simply a pair of lines. To compute Ẋ we simply differentiate the
tangency constraint. After some algebraic manipulations, we obtain:

RẊ = B
(

Ω
V

)
. (8)

B =b−1RXθ (Rn)� [[C − t]× − I] is a 3×6 matrix with b = (X+RT (t−C))T nθ .
The sliding of the contour generator is in the tangent plane and therefore tangent to the
line of sight. In perspective projection, the sum of the sliding and the rigid motion
projects to an image velocity which is different from the pure rigid motion (see Fig. 2-
b). This sliding componnent is not taken into account in approaches based on optical
flow for tracking [10].

3 Model-Based Contour Detection

For the human tracker to successfully track the human motion, the correct detection
of the extremal contours in the image is essential. Both edges caused by the back-
ground, and those caused by texture within the actor, could distract the tracker from the
true extremal boundaries. Therefore, the predicted model contours are used to extract
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Fig. 3. (a) The arm is visible from the top view. (b) Standard Canny filter reveals markings on the
ground and foldings of the clothings. (c) Color Canny filter partially detects the arm contours. (d)
Anisotropic Gaussian color filter reveals the full arm contours.

edges using an edge aligned anisotropic filter in the neighborhood of the predicted ex-
tremal contour. The aligned edge detection emphasizes edges in the modelled direction
while suppressing edges in undesired directions. This model-based contour detection
minimizes the chance of ’false’ boundarie detection, thereby optimizing the chance of
successful tracking.

Color edges. We start by detecting the color edges. Given a color image, I (x) =
(R (x) , G (x) , B (x))T , the local differential structure is described by the color tensor,

G =
(

Ix ·Ix Ix ·Iy

Iy ·Ix Iy ·Iy

)
, (9)

where Ix and Iy denote horizontal and vertical gradients, and the bar (·) operator de-
notes a convolution with a Gaussian kernel. DiZenzo [19] pointed out that the structure
tensor correctly combines the vectors in the separate channels. A simple addition could
lead to edge annihilation in case of opposing derivatives, whereas the principle eigen-
value of the color tensor,

λ1 = 1
2

(
I2
x + I2

y +
((

I2
x − I2

y

)2
+

(
2Ix ·Iy

)2
)1/2

)
(10)

correctly detects the color edges. This prevents the disappearance of isoluminant edges
as is indicated in Fig. 3.

Anisotropic filtering. To minimize the chance of undesired edges, which complicate
the subsequent minimization procedure, we exploit the model information derived from
the kinematic model. Based on the predictions from the kinematic model, the image is
divided into patches, each of which contains a single predicted extremal contour. Then,
from the model we derive both the length and the orientation of the predicted contour in
the current image. This information is used to explicitly focus the derivative filters on
edges in a particular direction. For this purpose we apply anisotropic Gaussian filtering
[14], [20], for which the kernel is given by:

g (u, v; σu, σv, ψ) =
1

2πσuσv
e
−
�

u2

2σ2
u

+ v2

2σ2
v

�
, (11)
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Fig. 4. (left) An example of anisotropic Gaussian with orientation θ = Π/4; (middle) Gaussian
derivative in the u direction; (right) Gaussian derivative in the v direction

where (u, v)T = R(x1, x2)T and R is 2 × 2 rotation matrix of angle ψ. The three
parameters describing the anisotropic Gaussian are derived from the kinematic model.
ψ is given by the orientation of the considered extremal contour. σu is given by the
extremal contour size, σu = length/4 and σv = 2 with the constraint σu > σv . Once

Fig. 5. (a) Original color image. (b) Standard Canny filter. (c) Color Canny filter detects the
contours partially better but there still exists plenty of distracting edges. (d) Anisotropic Gaussian
color filter reveals the full boundary edges.

aligned with an edge, the anisotropic filter increases smoothing along the edge, and
reduces smoothing across the edge. This ensures better contrast conservation than is
obtainable with isotropic filters. Moreover, responses from edges which deviate sig-
nificantly from the kernel orientation are suppressed. An example of an anisotropic
Gaussian is given in Fig. 4. The anisotropic color tensor is computed by applying the
derivative filters gu (u, v; σu, σv, ψ) and gv (u, v; σu, σv, ψ) to compute the derivatives
Iu, Iv . The eigenvalues of the color tensor constructed with Iu and Iv describe the
anisotropic color edge map of the image. Finally, we apply the color Canny algorithm
as described in [16] to compute the binary edge map. Fig. 4c and d show the gain which
is obtained by applying an anisotropic color Canny instead of a standard color Canny.
The elongated anisotropic filter does not get distracted by the perpendicular edges of
the white dashes. To efficiently compute the anisotropic Gaussian we use a recursive
implementation [14], [21], [22].
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4 Fitting Extremal Contours to Image Contours

In this section, we consider the problem of fitting the predicted extremal contours with
image contours extracted with the method described in section 3. To perform this track-
ing, we have to measure the discrepancy between a set of predictions (extremal con-
tours) and a set of observations (image contours): we want to find the model’s parame-
ters that minimize this discrepancy. For the sake of clarity of exposition we consider
only one body part seen from one camera. We collect extremal-contour points from the
body-part. Let X = {x1, . . . , xj , . . . , xm} be the prediction vector, a set of m pre-
dicted extremal-contour points. The components of this vector are 2-D points and they
are parameterized by Φ. Similarly, let Y = {y1, . . . , yi, . . . , yk} be the observation
vector – a set of contour points observed in the image patch which contains the pre-
dicted body part extremal contour. In order to estimate the motion parameters one has
to compare these two sets through a metric and to minimize it over the motion variables.
Therefore, the problem can be generally stated as the minimization of a multi-variate
scalar function E (equation (1)). One possible choice for the error function, that works
well in practice, is the sum of the distances to the nearest image contour over all the pre-
dicted extremal contours points. This distance can be efficiently computed as a chamfer
distance performed after the edge detection. Then, the error function writes:

E(Y, X (Φ)) =
m∑

j=1

D2
j (Y, xj(Φ)), (12)

where D2
j (Y, xj(Φ)) is the bi-linear interpolation of the chamfer-distance image at

point xj(Φ). We denote by [x] the integer part of a real number x. Let u1 = [x1] and
u2 = [x2] be the integer parts, and r = x1 − [x1] and s = x2 − [x2] be the fractional
parts of the coordinates of a predicted point x. D(Y, x) writes as:

D(Y, x) = αCY (u1, u2) + βCY(u1 + 1, u2) (13)

+γCY(u1, u2 + 1) + λCY(u1 + 1, u2 + 1),

where, α = (1 − r)(1 − s), β = r(1 − s), γ = (1 − r)s, λ = rs and CY denotes
the chamfer image computed from the extremal contour map. Note that to avoid the
chamfer map to be distracted by the other edges from other body parts, we compute the
chamfer map on each of the edge map patches (Fig. 2(e)).

4.1 Minimizing the Chamfer Distance

The minimization problem defined by equation (1) can be rewritten as the sum of
squares of the chamfer distances over the predicted model contours:

f(Φ) =
1
2

m∑
j=1

D2
j (Y, xj(Φ)) =

1
2

m∑
j=1

D2
j (Φ). (14)
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In order to minimize this function over the motion parameters, we take its second-order
Taylor expansion as well as the Gauss-Newton approximation of the Hessian:

f(Φ + d) = f(Φ) + d�J�
DD +

1
2
d�J�

DJDd + . . . ,

where D� =
(
D1 . . . Dm

)
and J�

D = [dD/dΦ]� is the n × m matrix:

J�
D =

[
d D1

d Φ . . . d Dm

d Φ

]
. (15)

The derivative of the chamfer distance Dj with respect to the motion parameters de-

composes as: d Dj

d Φ =
[

d Dj

d x

]�
d x
d Φ . By noticing that d[x]/dx = 0, we immediately

obtain an expression for dDj/dx:

∂Dj

d x1
= (1 − s)(CY(u1 + 1, u2) − CY(u1, u2)) +

s(CY(u1 + 1, u2 + 1) − CY(u1, u2 + 1))
∂Dj

d x2
= (r − 1)(CY(u1 + 1, u2) + CY(u1, u2)) +

r(CY (u1 + 1, u2 + 1) + CY(u1, u2 + 1)).

From equation (2), we have dx
dΦ = JI(A + B)JK . We then perform the minimization

using the Levenberg-Marquardt algorithm.

5 Discussion and Results

In this section we show results of our contour-based tracker. The lack of robustness we
encountered with a silhouette-based approach motivated us to design a purely edge-
based method. We will illustrate both the failure of standard edge detection methods
and a successful tracking of a long sequence based on our model-based contour tracker.

But firstly, let’s go back to the problem of minimizing the chamfer distance. At each
time instant, the tracker is initialized with the previously found solution and equation
(14) must be minimized. This minimization problem needs one necessary condition,
namely that the n × n Hessian matrix has full rank. The Jacobian JD is of size m × n
and we recall that n is the number of variables to be estimated (the motion parameters)
and m is the number of predictions (extremal contour points). To compute the inverse
of J�

DJD we must have m ≥ n with n independent matrix rows.
Since each prediction accounts for one row in the Jacobian matrix, one must some-

how ensure that there are n “independent” predictions. If each body part is viewed as
a rigid object in motion, then it has six degrees of freedom. A set of three non-colinear
points constrain these degrees of freedom. Whenever there are one-to-one model-point-
to-image-point assignments, a set of three points is sufficient to constrain all six degrees
of freedom. In the case of the chamfer distance there are no such one-to-one assign-
ments and each model point yields only one constraint. Therefore, when one uses the
chamfer distance, the problem is underconstrained since three non-colinear points yield
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Fig. 6. Joint angles of left and right elbows during simple gymnastics

three constraints only. Within a kinematic chain each body-part has p degrees of free-
dom. Fortunately the body-parts are linked together to form kinematic chains. There-
fore, one sensible hypothesis is to assume that the points at hand are evenly distributed
among the body parts.

The kinematic human-body model that we use is composed of 5 kinematic chains
that share a common root body-part, 19 body-parts, and 40 degrees of freedom. There-
fore, with an average of 3 points per body-part, there are in principle enough constraints
to solve the tracking problem. Notice that the root-body part can arbitrarily be chosen
and there is no evidence than one body-part is more suitable than another body-part to
be the root part.

In practice there are other difficulties and problems. Due to total and partial occlu-
sions the numbers of visible body-parts varies. Therefore, it is not always possible to
ensure that that all the degrees of freedom are actually measured in one image. Even if
a point attached to a visible body-part is predicted in the image, it may not be present in
the data and/or it may be badly extracted and located. Non-relevant edges that lie in the
neighborhood of a predicted location contribute to the chamfer distance and therefore
complicate the task of the minimization process.

One way to increase the robustness of the tracker is to use additinal data. The lat-
ter may be obtained by using several cameras, each camera providing an independent
chamfer distance error function. Provided that the cameras are calibrated and synchro-
nized the method described above can be simultaneously applied to all the cameras.
There will be several Jacobian matrices of the form of JD (one for each camera) and
these matrices can be combined together in a unique Jacobian, provided that a com-
mon world reference frame is being used [11]. Therefore, one increases the number of
predictions (lines in the Jacobian) without increasing the number of variables.

It is worthwhile to notice that the extremal contours viewed with one camera are
different than the extremal contours viewed with another camera. Indeed, these two
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(1)

(2)

(3)

(4)

(5)

Fig. 7. Tracking of a 200-frame video sequence comparing standard edge detection method with
the Anisotrpic Gaussian filtering. The standard edge detection on gray level images is shown on
row (1). The estimated pose is given on row (2). Note that the tracker fails: the arms are not
correctly tracked. The Anisotrpic Gaussian filtering (3) performs well on the arms compared to
the standard method. The estimated pose is given on row (4). Last row (5) shows the extremal
contours projected onto the original camera images.

sets of contours correspond to different physical points onto the surface. One great
advantage of this feature is that there is no need to establish point-to-point matches
between images taken with distinct cameras.
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Fig. 8. Tracking of 250 frames video sequence. Each first four rows shows one camera viewpoint.
The extremal contours are predicted and shown on each camera image. Using this prediction, we
perform the model-based tracking to obtain the new model pose (bottom row).

We will now illustrate the advantages of the proposed model based contour method.
We performed experiments with realistic and complex human motion. The system is
composed of 6 synchronized cameras running at 30 frames/second. The minimization
process which resides in the inner loop of the proposed tracking approach converges
in approximately 5 iterations. After 5 iterations, the optimization do not lead to worthy
improvement of the estimated pose.

Fig. 6 shows a plot of the angular values of both left and right elbows during the
first 120 frames of a 600 frames sequence. Fig. 7 provides a comparison between the
method based on standard edge detection and the method using anisotropic Gaussian
filtering. Top row provides a camera view point with model contours obtained using the
anisotropic gaussian filtering. Second and third rows shows the the standard edges and
the model pose. The method fails when the arms are to close to the head since their are
too many distracting edges. The last rows provides the model based edge detection and
the model pose.For the clarity of this figure, the edges are gathered on an single image.
The tracking performs well since very few distracting edges still remain.
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Finally, fig. 8 provides an example of motion tracking performed on images. Top row
of fig. 8 provides a camera view point. The predicted extremal contours are shown on
those images. Providing this prediction, the model based edge detection is performed in
the neighborhood of each extremal contour. For the clarity of this figure, the edges are
gathered on an single image (middle row). Using both the prediction of the extremal
contours and the edge detection we estimate the new model pose (bottom row). The
tracker performed well on this 220 frames long video sequence.

6 Conclusions

In this paper we proposed a method for tracking the motion of articulated objects that
combines a kinematic parameterization of the object’s extremal contours with edge de-
tection performed by an anisotropic Gaussian filter. The method relies on contour track-
ing, i.e., it minimizes the sum of squares of error functions between predicted model
contours and image contours. This error is estimated using the directed chamfer dis-
tance. The advantage of the latter is that it does not need data-point-to-model-point
assignments. Whenever a body part is predicted visible in an image, anisotropic edge
detection is applied to an appropriate image patch and is guided by the orientation
of the predicted extremal contours. This process filters out irrelevant edges, such as
background edges or edges produced by clothes. The model-to-image contour fitting
is carried out over all the image patches (one image patch per body parts), therefore
it avoids interactions between image edges and extremal contours that should not be
matched. We discussed in detail the issue of how many cameras should be used to per-
form articulated motion tracking and we came to the conclusion that, in principle, one
camera may be sufficient. Nevertheless, an increase in the number of cameras drasti-
cally improves both the robustness of the minimizer and the quality of the results. This
contour-based method compares well with a silhouette-based method simply because
our contour detection method provides a richer image description. For example, it takes
into account edges inside the silhouette such as the inner edge of the arm when the latter
sticks to the torso. Future work will investigate ways to enforce color and motion co-
herence during tracking to further limit the effect of the background clutter. Currently,
we invert a highly redundant set of constraints from all visible contours in all images.
Another direction of research is how to select the “most attractive” image contours to
further enhance our tracker.
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Abstract. If we consider the appearance of human motion such as gait, facial
expression and gesturing, most of such activities result in nonlinear manifolds in
the image space. Although the intrinsic body configuration manifolds might be
very low in dimensionality, the resulting appearance manifold is challenging to
model given various aspects that affects the appearance such as the view point, the
person shape and appearance, etc. In this paper we learn decomposable generative
models that explicitly decompose the intrinsic body configuration as a function
of time from other conceptually orthogonal aspects that affects the appearance
such as the view point, the person performing the action, etc. The frameworks
is based on learning nonlinear mappings from a conceptual representation of the
motion manifold that is homeomorphic to the actual manifold and decompose
other sources of variation in the mapping coefficient space.

1 Introduction

Despite the high dimensionality of the configuration space, many human motion ac-
tivities lie intrinsically on low dimensional manifolds. For example, the shape of the
human silhouette through a walking cycle is an example of a dynamic shape where
the shape deforms over time based on the action performed but it is also a function of
the person body style and the view point. Gait is a 1-dimensional manifold embedded
in the body configuration space and it is also a 1-dimensional manifold embedded in the
visual input space. Similarly, the appearance of a face performing a facial expression
is an example of dynamic appearance. Therefore, researchers have tried to exploit the
manifold structure implicitly or explicitly in tasks such as tracking and activity recog-
nition. Learning nonlinear deformation manifolds is typically performed in the visual
input space or through intermediate representations. For example, Exemplar-based ap-
proaches such as [26] implicitly model nonlinear manifolds through points (exemplars)
along the manifold. Such exemplars are represented in the visual input space. HMM
models provide a probabilistic piecewise linear approximation of the manifold which
can be used to learn nonlinear manifolds as in [5] and in [3].

Data vs. Concept Driven Manifold Embedding: Embedding manifolds to low di-
mensional spaces provides a way to explicitly model such manifolds. Learning motion
manifolds can be achieved through linear subspace approximation (PCA) as in [9]. PCA

R. Vidal, A. Heyden, and Y. Ma (Eds.): WDV 2005/2006, LNCS 4358, pp. 100–114, 2007.
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have been widely used in appearance modeling to discover subspaces for appearance
variations and modeling view manifolds as in [16,15,2,6]. Linear subspace analysis can
achieve a linear embedding of the motion manifold in a subspace. However, the dimen-
sionality of the subspace depends on the variations in the data and not in the intrin-
sic dimensionality of the manifold. Nonlinear dimensionality reduction approaches can
achieve much lower dimensionality embedding of nonlinear manifolds through chang-
ing the metric from the original space to the embedding space based on local structure
of the manifold, e.g. [24,20,4]. Nonlinear dimensionality reduction has been recently
exploited to model motion manifolds for tracking and 3D pose recovery [29,8,7,23].
However, all these approaches (linear and nonlinear) are data-driven, i.e., the visual
input is used to model motion manifolds. The resulting embedding is data-driven and
therefore the resulting embedded manifolds of different people performing the same
action will be quite different.

To explain our point, let us consider the gait case. Basically, the gait is a 1-dimensional
closed loop, embedded in the visual input space, that twists differently depending on
the view point, the body shape, self occlusion, clothing, etc. Therefore, embedded man-
ifolds for different people walking from the same view point will be different. The
same if we consider manifolds for different views of the same walking person. This
was shown in [7,8] where LLE [20] was used to obtain the embedding. These varia-
tions pose a challenge if we would like to use motion manifolds as constraints for the
motion, for example in tracking or for body pose recovery. But, conceptually all these
manifolds are the same. They are all topologically equivalent, i.e., homeomorphic to
each other and we can establish a bijection between any pair of them. They are all also
homeomorphic to the gait manifold in a kinematic 3D body configuration space. So,
the question we try to address is: given conceptual knowledge about the topology of
the manifold, how can we use such knowledge in modeling real motion manifolds with
different sources of variability such as different people, different views, etc. ?

Generative vs. Discriminative Models. Several approaches have been introduced in
the literature to directly infer 3D body pose as a learned function from the visual input
[11,3,19,18,14,22,1]. Such approaches, as well as the one introduced here, have great
potentials in solving the fundamental initialization problem for model-based vision as
well as in recovering from tracker failures. However, almost all these approaches are
discriminative approaches where the mapping is learned from the visual input to 3D
or other intermediate representations. In contrast, in [7,23] manifolds are learned in a
generative fashion, i.e., learn mapping from a learned low dimensional manifold repre-
sentation into the visual input. We argue that learning a generative mapping is advanta-
geous for several reasons. Generative mapping provides means to synthesize the visual
input and therefore fits well within a Bayesian tracking framework as an observation
model. Mapping from the visual input to 3D poses or view points are not necessarily a
function but mapping from a manifold representation to the visual input is a function
given that the manifold representation doesn’t self intersect which is guaranteed in case
conceptual embedding is used, as in this paper.

Contribution: In this paper we consider such classes of human motion which lie on
a one dimensional closed manifold such as gait and facial expressions. We introduce a
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framework to learn decomposable generative models for dynamic shape and dynamic
appearance of objects where the motion is constrained to one dimensional closed man-
ifolds while there are other sources of variability such as different views, different peo-
ple, different classes of motion, etc., all of which are needed to be parameterized. The
learned model supports tasks such as synthesis, body configuration recovery, recovery
of other aspects such as view, person parameters, etc. As direct and important applica-
tions of the introduced framework, we consider the case of gait and also show results
for facial expressions. We aim to learn a generative model that can generate walking
silhouettes for different people from different view points. Given a single image or a
sequence of images, we can use the model to solve for the body configuration, view and
person shape style parameters. As a result we can directly infer 3D body pose, view
point, and person shape style from the visual input. We also apply the model for facial
expressions as an example of a dynamic appearance. In this case we learn a generative
model that can generate different dynamic facial expressions for different people. The
model can successfully be used to recognize expressions performed by different people
never seen in the training.

2 Framework

Our objectives is to learn representations for the shape and/or the appearance of moving
(dynamic) objects that supports tasks such as synthesis, pose recovery, view recovery,
input reconstruction and tracking. Such learned representation will serve as decom-
posable generative models for dynamic appearance where we can think of the image
appearance (similar argument for shape) of a dynamic object as instances driven from
such generative model. Let yt ∈ Rd be the appearance of the object at time instance
t represented as a point in a d-dimensional space. This instance of the appearance is
driven from a model in the form yt = Tαγ(xt; a1, a2, · · · , an), where the appearance,
yt, at time t is an instance driven from a generative model where the function γ is a
mapping function that maps body configuration xt at time t into the image space. i.e.,
the mapping function γ maps from a representation of the body configuration space
into the image space given mapping parameters a1, · · · , an each representing a set of
conceptually orthogonal factors. Such factors are independent of the body configuration
and can be time variant or invariant. Tα represents a global geometric transformation
on the appearance instance. The general form for the mapping function γ that we use is

γ(xt; a1, a2, · · · , an) = C ×1 a1 × · · · ×n an · ψ(xt) (1)

where ψ(x) is a nonlinear kernel map from a representation of the body configuration
to a kernel induced space and each ai is a vector representing a parameterization of
orthogonal factor i, C is a core tensor, ×i is mode-i tensor product as defined in [12,28].

The model in equation 1 is a generalization over the model introduced in [8] where
only one factor can be decomposed. The main reason why the model in [8] is lim-
ited to decomposing a single factor is that the embedding used was data driven. In
that work LLE was used to obtain manifold embeddings, and then a mean manifold
is computed as a unified representation through nonlinear warping of manifold points.
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However, since the manifolds twists very differently given each factor (different people
or different views, etc.) it is not possible to achieve a unified configuration manifold
representation independent of other factors. Besides, in [8] there was no notion of op-
timal unified manifold representation. These limitations motivate the use of a natural
conceptual unified representation of the configuration manifold that is independent of
all other factors. Such unified representation would allow the model in equation 1 to
generalize to decompose as many factors as desired. In the model in equation 1, the
relation between body configuration and the input is nonlinear where other factors are
approximated linearly through multilinear analysis. The use of nonlinear mapping is
essential since the embedding of the configuration manifold is nonlinearly related to
the input.

For example for the gait case, a generative model for a walking silhouettes for dif-
ferent people from different view points will be in the form

yt = γ(xt; v, s) = C × v × s × ψ(x) (2)

where v is a parameterization of the view, which is independent of the body configu-
ration but can change over time, and s is a parameterization of the shape style of the
person performing the walk which is independent of the body configuration and time
invariant. The body configuration xt evolves along a conceptual representation of the
manifold that is homeomorphic to the actual gait manifold.

The question is what conceptual representation of the manifold we can use. Since the
gait is one dimensional closed manifold embedded in the input space, it is homeomor-
phic to a unit circle embedded in 2D. In general, all closed 1 D manifold is topologically
homeomorphic to unit circles. We can think of it as a circle twisted and stretched in the
space based on the shape and the appearance of the person under consideration or based
on the view. So we can use such unit circle as a unified representation of all gait cycles
for all people for all views. Given that all the manifolds under consideration are home-
omorphic to unit circle, the actual data is used to learn nonlinear warping between the
conceptual representation and the actual data manifold. Since each manifold will have
its own mapping, we need to have a mechanism to parameterize such mappings and de-
compose all these mappings to parameterize variables for views, different people, etc.

Given an image sequences ya
t , t = 1, · · · , T where a denotes a particular class set-

ting for all the factors a1, · · · , an (e.g., a particular person s and view v ) representing
a whole motion cycle and given a unit circle embedding of such data as xa

t ∈ R2 we
can learn a nonlinear mapping in the form

ya
t = Baψ(xa

t ) (3)

Given such mapping the decomposition in equation 2 can be achieved using tensor
analysis of the coefficient space such that the coefficient Ba are obtained from a multi-
linear [28] model

Ba = C ×1 a1 × · · · ×n an

Given a training data and a model fitted in the form of equation 1 it is desired to
use such model to recover the body configuration and each of the orthogonal factors
involved, such as view point and person shape style given a single test image or given

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



104 C.-S. Lee and A. Elgammal

a full or a part of a motion cycle. Therefore, we are interested in achieving an efficient
solution to a nonlinear optimization problem in which we search for x∗, v∗, s∗ which
minimize the error in reconstruction

E(v, s, x) =|| y − C × v × s × ψ(x) || (4)

or a robust version of the error. We introduce and efficient algorithms to recover these
parameters in the case of a single image input or a sequence of images.

3 Conceptual Embedding and Mapping

In this and next sections, for clarity of explanation and without loss of generality, we use
the gait example to show the procedure, however, the same solution framework applies
to other domains.

Conceptual Manifold Embedding: The input is a set of image sequences each repre-
sents a full cycle of the motion, e.g., a full walking cycle captured from different view
points. Each image sequence is of certain person and certain view. We assume that the
view does not change within any sequences. Each person can have multiple image se-
quences. The image sequences are not necessarily to be of the same length. We denote
each sequence by Y sv = {ysv

1 · · · ysv
Nsv

} where v denotes the view class index and s
is style index. Let Nv and Ns denote the number of views and number of styles re-
spectively, i.e., there are Ns × Nv sequences. Each sequence is temporally embedded
at equidistance on a unit circle such that xsv

i = [cos(2πi/Nsv + δsv) sin(2πi/Nsv +
δsv)], i = 1 · · · Nsv where the displacement parameter δ is used to align all the embed-
ded sequences. Notice that by temporal embedding on a unit circle we do not preserve
the metric in input space. Rather, we preserve the topology of the manifold.

Manifold Mapping: Given a set of distinctive representative and arbitrary points {zi ∈
R2, i = 1 · · ·N} we can define an empirical kernel map[21] as ψN (x) : R

2 → R
N

where

ψN (x) = [φ(x, z1), · · · , φ(x, zN )]T, (5)

given a kernel function φ(·). For each input sequence Y sv and its embedding Xsv we
can learn a nonlinear mapping function fsv(x) that satisfies fsv(xi) = yi, i = 1 · · ·Nsv

and minimizes a regularized risk criteria. From the representer theorem, such function
admits a representation of the form

f(x) =
N∑

i=1

wiφ(x, zi),

i.e., the whole mapping can be written as

fsv(x) = Bsv · ψ(x) (6)

where B is a d × N coefficient matrix. If radial symmetric kernel function is used, we
can think of equation 6 as a typical Generalized Radial basis function (GRBF) inter-
polation [17] where each row in the matrix B represents the interpolation coefficients
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for corresponding element in the input. i.e., we have d simultaneous interpolation func-
tions each from 2D to 1D. The mapping coefficients can be obtained by solving the
linear system

[ysv
1 · · · ysv

Nsv
] = Bsv[ψ(xsv

1 ) · · · ψ(xsv
Nsv

)]

Where the left hand side is a d×Nsv matrix formed by stacking the images of sequence
sv column wise and the right hand side matrix is an N ×Nsv matrix formed by stacking
kernel mapped vectors.

To align the sequences we use the model learned for a prototype cycle as a reference.
Given a prototype cycle coefficients B∗, any new cycle embedding coordinate is aligned
to it by searching for the displacement parameter δ that minimizes the reconstruction
error

E(δ) =
∑

i

‖yi − B∗ · ψ(xi(δ))‖

Decomposition: Multilinear tensor analysis decomposes multiple orthogonal factors as
an extension of principal component analysis (PCA) (one orthogonal factor), and bilin-
ear model (two orthogonal factors) [25]. Singular value decomposition (SVD) can be
used for PCA analysis and iterative SVD with vector transpose for bilinear analysis.
Higher-order tensor analysis can be achieved by higher-order sigular value decomposi-
tion (HOSVD) with unfolding, which is a generalization of SVD [12,28,27].

Each of the coefficient matrices Bsv = [b1b2 · · · bN ] can be represented as a coef-
ficient vector bsv by column stacking (stacking its columns above each other to form
a vector) Therefore, bsv is an Nc = d · N dimensional vector. All the coefficient vec-
tors can then be arranged in an order-three gait coefficient tensor B with dimensionality
Ns × Nv × Nc. The coefficient tensor is then decomposed as

B = Ã ×1 S̃ ×2 Ṽ ×3 F̃

where S̃ is the mode-1 basis of B, which represents the orthogonal basis for the style
space. Similarly, Ṽ is the mode-2 basis representing the orthogonal basis of the view
space and F̃ represents the basis for the mapping coefficient space. The dimensionality
of these matrices are Ns × Ns, Nv × Nv, Nc × Nc for S̃,Ṽ and F̃ respectively. A is a
core tensor, with dimensionality Ns × Nv × Nc which governs the interactions among
different mode basis matrices.

Similar to PCA, it is desired to reduce the dimensionality for each of the orthogonal
spaces to retain a subspace representation. This can be achieved by applying higher-
order orthogonal iteration for dimensionality reduction [13,28]. Final subspace repre-
sentation is

B = A ×1 S ×2 V ×3 F (7)

where the reduced dimensionality for A, S, V , and F are ns × nv × nc, Ns × ns,
Nv × nv, and Nc × nc where ns, nv and nc are the number of basis retained for each
factor respectively. Using tensor multiplication we can obtain coefficient eigenmodes
which is a new core tensor formed by Z = A ×3 F with dimension ns × nv × Nc.
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Given this decomposition and given any ns dimensional style vector s and any nv

dimensional view vector v we can generate coefficient matrix Bsv by unstacking the
vector bsv obtained by tensor product bsv = Z×1s×2v. Therefore we can generate any
specific instant of the motion by specifying the body configuration parameter xt through
the kernel map defined in equation 5. Therefore, the whole model for generating image
ysv

x can be expressed as

ysv
t = unstacking(Z ×1 s ×2 v) · ψ(xt)

This can be expressed abstractly also in the form of equation 2 by arranging the tensor
Z into a order-four tensor C with dimensionality d × ns × nv × N .

4 Parameter Estimation

Given a model fitted as described in the previous section and given a new image or a
sequence of images, it is desired to efficiently solve for each of the orthogonal factors
as well as body configuration. We discriminate here between two cases: 1: Input is
a whole motion cycle. 2: Input is a single image. For the first case we can obtain a
closed form analytical solution for each of orthogonal factors by aligning the input
sequence manifold to the model conceptual manifold representation. For the second
case we introduce an iterative solution.

4.1 Solving View and Style Given a Whole Sequences

Given a sequence of images representing a whole motion cycle, we can solve for the
view, v, and shape style, s. First the sequence is embedded to a unit circle and aligned
to the model as described in section 3. Then, mapping coefficients B is learned from
the aligned embedding to the input. Given such coefficients, we need to find the optimal
s and v factors which can generate such coefficients given the learned model. i.e., we
need to find s and v which minimizes the error

E(s, v) = ‖b − Z ×1 s ×2 v‖ (8)

where b is the column stacking of B. If the style vector, s is known we can obtain a
closed form solution for v. This can be achieved by evaluating the product G = Z ×1 s
to obtain tensor G. Solution for b can be obtained by solving the system b = G ×2 v for
v which can be written as a typical linear system by unfolding G as a matrix. Therefore
estimate of v can be obtained by

v = (G2)+b (9)

where G2 is the matrix obtained by mode-2 unfolding of G and + denotes the psuedo
inverse.

Similarly we can analytically solve for s if the view, v, is known by forming a tensor
H = Z ×2 v and therefore

s = (H1)+b (10)

where H1 is the matrix obtained by mode-1 unfolding of H.
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Iterative estimation of v and s using equations 9 and 10 would lead to a local minima
for the error in 8. Practically, it was found that starting with a mean style estimate s̃ we
can obtain almost correct solution for v. Since the view classes are discrete, we can find
the closest view class and use it to estimate s.

4.2 Solving for Body Configuration, View and Style from a Single Image

In this case the input is a single image and it is desired to estimate body configuration
and each of the decomposable factors. For the gait case, given an input image y, we need
to estimate body configuration, x , view v, and person shape style s which minimize the
reconstruction error E(x, v, s)

E(x, v, s) =|| y − C × v × s × ψ(x) || (11)

We can instead use a robust error metric and in both cases we end up with a nonlinear
optimization problem.

We assume optimal style can be written as a linear combination of style classes
in the training data. i.e., we need to solve for linear regression weights α such that
s =

∑Ks

k=1 αksk where each sk is a mean of one of Ks style classes in the training
data. Similarly for the view, we need to solve for weights β such that v =

∑Kv

k=1 βkvk

where each vk is a mean of one of Kv view classes.
If the style and view factors are known, then equation 11 reduced to a nonlinear 1-

dimensional search problem for, body configuration x on the unit circle that minimizes
the error. On the other hand, if the body configuration and style factor are known, we
can obtain view conditional class probabilities p(vk|y, x, s) which is proportional to
observation likelihood p(y | x, s, vk). Such likelihood can be estimated assuming a
Gaussian density centered around C × vk × s × ψ(x), i.e.,

p(y | x, s, vk) ≈ N (C × vk × s × ψ(x), Σvk

).

Given view class probabilities we can set the weights to βk = p(vk | y, x, s). Simi-
larly, if the body configuration and view factor are known, we can obtain style weights
by evaluating image likelihood given each style class sk assuming a Gaussian density
centered at C × v × sk × ψ(x).

This setting favors an iterative procedures for solving for x, v, s. However, wrong es-
timation of any of the factors would lead to wrong estimation of the others and leads to
a local minima. For example wrong estimation of the view factor would lead to a totally
wrong estimate of body configuration and therefore wrong estimate for shape style. To
avoid this we use a deterministic annealing like procedure where in the beginning the
view weights and style weights are forced to be close to uniform weights to avoid hard
decisions about view and style classes. The weights are gradually become discrimina-
tive thereafter. To achieve this, we use a variable view and style class variances which
are uniform to all classes and are defined as Σv = Tvσ

2
vI and Σs = Tsσ

2
sI respec-

tively. The parameters Tv and Ts start with large values and are gradually reduced and
in each step and a new body configuration estimate is computed.
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We summarize the solution framework as follows.

Input: image y, view class means vk, style class means sk, core tensor C
Initialization :

– initialize Tv and Ts

– initialize α and β to uniform weights
– Compute initial s =

�Ks
k=1 αksk

– Compute initial v =
�Kv

k=1 βkvk

Iterate :
– Compute coefficient B = C × s × v
– Estimate body configuration: 1-D search for x that minimizes E(x) = ||y − Bψ(x)||
– estimate new view factor

• Compute p(y|x, s, vk)
• Update view weights βk = p(vk|y, x, s)
• Estimate new v as v =

�Kv
k=1 βkvk

– Update coefficient B = C × s × v

– Estimate body configuration: 1-D search for x that minimizes E(x) = ||y − Bψ(x)||
– estimate new style factor

• Compute p(y|x, sk, v)
• Update style weights αk = p(sk|y, x, v)
• Estimate new s as s =

�Ks
k=1 αksk

– reduce Tv , Ts

One important aspect that need to be mentioned for the special case of gait is that
there is a high similarity between silhouette shapes in each of the half cycles for cer-
tain views. In fact, if orthographic projection is used, side view silhouettes will look
identical in both halves of the walking cycle. But since perspective imaging is actu-
ally used, there is slight differences in silhouette shapes between the two half cycles
which are enough to discriminate body configuration throughout the cycle. However,
such similarity can cause a confusion in estimating x, s, v. This motivates a modifica-
tion of the above algorithm for the spacial case of gait where we use dual hypotheses
for body configuration and view and style factors. At initialization we solve for body
configuration x given the mean style and mean view factors then we initializes dual
body configuration hypotheses as x and its antipodal point on the circle which we call
x̃. The iterations above proceed with two sets of estimates (x, s, v) and (x̃, s̃, ṽ). The
two sets typically either converge to the same solution or they diverge to two antipodal
body configurations where one of them will lead to less error.

5 Experimental Results

5.1 Dynamic Shape Example: Gait Analysis

In this section we show an example of learning the nonlinear manifold of gait as an
example of a dynamic shape. We used CMU Mobo gait data set [10] which contains
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Fig. 1. a,b) Example of training data. Each sequence shows a half cycle only. a) four different
views used for person 1 b) side views of people 2,3,4,5. c) style subspace: each person cycles
have the same label. d) unit circle embedding for three cycles. e) Mean style vectors for each
person cluster. f) View vectors.

walking people from multiple synchronized views1. For training we selected five peo-
ple, five cycles each from four different views. i.e., total number of cycles for training
is 100=5 people × 5 cycles × 4 views. Note that cycles of different people and cy-
cles of the same person are not of the same length. Figure 1-a,b show examples of the
sequences (only half cycles are shown because of limited space).

The data is used to fit the model as described in section 3. Images are normalized to
60×100, i.e., d = 6000. Each cycle is considered to be a style by itself, i.e., there are 25
styles and 4 views. Therefore, Ns = 25, Nv = 4. 18 equidistance points on the unit cir-
cle are used to obtain the kernel map space defined in equation 5, i.e., Nc = 6000 × 18.
After coefficient decomposition and dimensionality reduction as in equation 7 the di-
mensionality for A, S, V, F are 5 × 4 × 120, 25 × 5, 4 × 4, (18 × 6000) × 120 re-
spectively. Figure 1-d shows example of model-based aligned unit circle embedding of
three cycles. Figure 1-c shows the obtained style subspace where each of the 25 points
corresponding to one of the 25 cycles used. Important thing to notice is that the style
vectors are clustered in the subspace such that each person style vectors (corresponding
to different cycles of the same person) are clustered together which indicate that the
model can find the similarity in the shape style between different cycles of the same
person. Figure 1-e shows the mean style vectors for each of the five clusters. Figure 1-f
shows the four view vectors.

Evaluation Experiment 1: In this experiment we used the learned model given the
training data described above to evaluate the recovery of body configuration, view, and
person shape style given test data of the same people in the training but with different
cycles not used in the training. We used two new cycles for each of the five people from

1 CMU Mobo gait data set [10] contains 25 people, about 8 to 11 walking cycles each captured
from six different view points. The walkers were using a treadmill.
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Fig. 2. a,b) Example pose recovery. from top to bottom: input shapes, implicit function, recovered
3D pose. c) Style weights. d) View weights.
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Fig. 3. Iterations for frame 5 from above. Left: Error. Center: style weights. Right: View weights.

the four views, i.e., 40 cycles with a total of 1344 frames in all the test sequences. if
we use a whole cycle for recovery of view and person parameter as described in 4.1
we obtain 100% view classification. For style classification we get 36 out of 40 correct
classification using nearest style mean and 40 out of 40 using nearest neighbor. If we
use single frames for recovery, as described in section 4.2, we get 7 frame errors among
1344 test frames for body configuration and style estimation, i.e., 99.5% accuracy with
100% correct view estimation 2.

Figure 2 shows example of using the model to recover the pose, view and style.
The figure shows samples of a one full cycle and the recovered body configuration
at each frame. Notice that despite the subtle differences between the first and second
halves of the cycle, the model can exploit such differences to recover the correct pose.
The recovery of 3D joint angles is achieved by learning a mapping from the manifold
embedding and 3D joint angle from motion captured data using GRBF in a way similar
to equation 3. Figure 2-c,d shows the recovered style weights (class probabilities) and
view weights respectively for each frame of the cycle which shows correct person and
view classification. Figure 3 visualizes the progress of the error, style weights, view

2 A body configuration is considered an error if the distance between correct and estimated
embedding is more than π/8 which is about 2 to 4 frame distance in the original sequence.
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Fig. 4. Examples of pose recovery and view classification for three different people from three
views

weights through the iterations used to obtain the results for frame 5. As can be noticed,
the weights start uniformly and then smoothly home to the correct style and view as the
error is reduced and the correct body configuration is recovered.

Evaluation Experiment 2: In this experiment we used the learned model to evaluate
the recovery of body configuration and view given test data of people which have not
seen before in the training. We used 8 people sequences, 2 cycles each, from 4 views
where none of these people were used in the training. Overall there are 2476 frames in
the test sequences. The recovery of the parameters was done on a single frame basis as
described in section 4.2. We obtained 111 errors in the recovery of the body configura-
tion, i.e., body configuration accuracy is 95.52%. For view estimation we get 7 frame
errors, i.e., view estimation accuracy 99.72%. This result shows that the model gener-
alizes and we can recover the view and body configuration with very high accuracy for
unseen people. Figure 4 shows examples recovery of the 3D pose and view class for
four different people non of them was seen in training. More examples can be seen in
the attached video clips.
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Fig. 5. From top to bottom: Samples of the input sequences; Expression probabilities; Expression
classification; Style probabilities. (a) For known person. (b) Generalization to new people.
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5.2 Dynamic Appearance Example: Facial Expression Analysis

We used the model to learn facial expressions manifolds for different people. We used
CMU-AMP facial expression database where each subject has 75 frames of varying fa-
cial expressions. We choose four people and three expressions each (smile, anger, sur-
prise) where corresponding frames are manually segmented from the whole sequence
for training. The resulting training set contained 12 sequences of different lengths. All
sequences are embedded to unit circles and aligned as described in section 3. A model
in the form of equation 1 is fitted to the data where we decompose two factors: per-
son facial appearance style factor and expression factor besides the body configuration
which is nonlinearly embedded on a unit circle.

We used the learned model to recognize facial expression, and person identity at
each frame of the whole sequence. Figure 5 (a) shows an example of a whole sequence
and the different expression probabilities obtained on a frame per frame basis using the
algorithm described in section 4.2. The figure also shows the final expression recogni-
tion after thresholding along manual expression labeling. We used the learned model to
recognize facial expressions for sequences of people not used in the training. Figure 5
(b) shows an example of a sequence of a person not used in the training. The model can
successfully generalizes and recognize the three learned expression for this new subject.

6 Conclusion

In this paper we presented a framework for learning a decomposable generative model
for dynamic shape and dynamic appearance where the intrinsic motion lies on a closed
1D manifold which, in such case, is homeomorphic to a unit circle. Conceptual mani-
fold embedding on a unit circle has many advantages. Fundamentally, this allows mod-
eling any variations (twists) of the manifold given any number factors such as different
people, different views, etc. since all resulting manifolds are still topologically equiva-
lent to the unit circle. This is not achievable if data-driven embedding is used. Another
advantage of conceptual embedding is that we only need one cycle of data to learn the
manifold while any data-driven embedding would require several cycles to achieve a
reasonable embedding. For the case of gait we used temporal information to embed
the data which, in this case, provides a straight forward dynamic model for tracking.
The use of a generative model is tied to the use of conceptual embedding since the
mapping from the manifold representation to the input space will be well defined in
contrast to a discriminative model where the mapping from the visual input to manifold
representation is not necessarily a function. We introduced a framework to solve for
various factors such as body configuration, view, and shape style. Since the framework
is generative, it fits well in a Bayesian tracking framework and it provides separate
low dimensional representations for each of the modelled factors. Moreover, a dynamic
model for configuration is well defined since it is constrained to the 1D manifold repre-
sentation. The framework also provides a way to initialize a tracker by inferring about
body configuration, view point, body shape style from a single or a sequence of images.
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Abstract. In this paper, we represent human actions as sentences gener-
ated by a language built on atomic body poses or phonemes. The knowl-
edge of body pose is stored only implicitly as a set of silhouettes seen from
multiple viewpoints; no explicit 3D poses or body models are used, and
individual body parts are not identified. Actions and their constituent
atomic poses are extracted from a set of multiview multiperson video
sequences by an automatic keyframe selection process, and are used to
automatically construct a probabilistic context-free grammar (PCFG),
which encodes the syntax of the actions. Given a new single viewpoint
video, we can parse it to recognize actions and changes in viewpoint
simultaneously. Experimental results are provided.

1 Introduction

The motivation for representing human activity in terms of a language lies pri-
marily in the dual ability of linguistic mechanisms to be used for both recognitive
and generative purposes. This ability is highly desirable for a representation of
human action, since humans (or humanoid robots) must not only recognize ac-
tions performed by their peers, but also potentially perform (or generate) these
actions themselves. Rizzolatti and Arbib [1] discuss the presence of so-called
mirror neurons in the monkey brain, which respond when a monkey observes a
grasping action, and also when the monkey performs a similar action. Such ob-
servations indicate the proximity of recognitive and generative processes in the
brain at a very low level, and further add to the appeal of using structures such
as grammars for modeling actions, since they too possess such a dual character.

In computer vision, although the developments in recognition and description
of human activity are relatively recent, there exist a wide variety of methods,
including many which implicitly or explicitly utilize the parallels with language.
Due to space constraints, we mention only a few methods which are relevant to
the ideas on full body action recognition presented in this paper; for a broader
perspective, we refer the interested reader to recent reviews by Aggarwal et
al [2] and Wang et al [3], which survey various approaches for human motion
analysis including the recognition of human actions. HMM’s as well as context-
free grammars have previously been used in the recognition of hand and face
gestures, but the literature in these areas is extensive, and we will limit ourselves

R. Vidal, A. Heyden, and Y. Ma (Eds.): WDV 2005/2006, LNCS 4358, pp. 115–126, 2007.
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to full body action recognition only. For a review of hand gesture recognition
techniques, the reader is referred to [4].

Hidden Markov Models (HMMs) have often been used to express the temporal
relationships inherent in human actions. Yamato et al. [5] used mesh features of
human silhouettes from a single viewpoint to build one HMM for each action.
Bregler et al. [6] describe a four level probabilistic framework for segmentation,
tracking and classification of human dynamics. Brand et al. [7] use HMMs and
infer 3D pose and orientation from silhouettes, using 3D motion capture data
and 2D projections for training. Bobick et al. [8] model actions using a novel
representation called temporal templates. Kojima et al. [9] build a verbs hier-
archy using case frames to produce textual descriptions of activity. Sullivan et
al. [10] develop a view based approach which uses manually selected keyframes
to represent and find similar actions in a video using a novel matching algo-
rithm. Rao et al. [11] represent actions using view-invariant dynamic instants
found using the spatiotemporal curvature of point trajectories. Davis et al. [12]
discuss a reliable inference framework for discriminating various actions. Mori
et al. [13] use 3D motion data and associate each action with a distinct fea-
ture detector and HMM, followed by hierarchical recognition. Feng et al. [14]
model actions using codewords extracted from movelets (spacetime poses con-
structed by identifying body parts), and estimate the likely movelet codeword
sequence with HMMs. Park et al. [15] compute 3D pose from silhouettes for
every image and kinetic parameters which are recognized with a hierarchical
DFA.

In this paper, we present an approach for using multiview training videos
to automatically create view-independent representations of actions within the
framework of a probabilistic context-free grammar. This grammar is then used
to parse a new single-viewpoint video sequence to deduce the sequence of actions
in a view-invariant fashion.

2 Our Approach

We believe that the right place to begin a discussion about actions and their
recognition is to first ask the question: what do we really mean by actions?
When humans speak of recognizing an action, they may be referring to a set
of visually observable transitions of the human body such as ’raise right arm’,
or an abstract event such as ’a person entered the room’. While recognizing the
former requires only visual knowledge about allowed transitions or movements of
the human body, the latter requires much more than purely visual knowledge: it
requires that we know about rooms and the fact that they can be ’entered into’
and ’exited from’, along with the relationships of these abstract linguistic verbs
to lower level verbs having direct visual counterparts. In this paper, we shall deal
with the automatic view-invariant recognition of low level visual verbs which only
involve the human body. The visual verbs enforce the visual syntactic structure of
human actions (allowed transitions of the body and viewpoint) without worrying
about semantic descriptions.
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In our framework, each training verb or action a is described by a short
sequence of key pose pairs a = ((p1, p2), (p2, p3), ..., pk), where each pose pi ∈ P ,
where P is the complete set of observed (allowed) poses. Note that for every
consecutive pair, the second pose in the earlier pair is the same as the first pose
in the latter pair, since they correspond to the same time instant. This is because
what we really observe in a video is a sequence of poses, not pose pairs. Hence,
if we observe poses (p1, p2, p3, p4) in the video, then we build the corresponding
pose pairs as ((p1, p2), (p2, p3), (p3, p4)).

Each pose pi is represented implicitly by a family of silhouettes (images)
observed in m different viewspoints, i.e. pi = (p1

i , p
2
i , ..., p

m
i ). The set of key

poses and actions is directly obtained from multi-camera multi-person training
data without manual intervention. A probabilistic context-free grammar (PCFG)
is automatically constructed to encapsulate the knowledge about actions, their
constituent poses, and view transitions. During recognition, the PCFG is used
to find the most likely sequence of actions seen in a single viewpoint video. Let
us explore these steps in detail.

2.1 Keyframe Extraction

In this paper, we do not deal with background subtraction, which is a widely
studied topic of research in itself. The sequences we have used were obtained
using a white background which make background subtraction a straightfor-
ward task. We have also experimented with a combination of motion, depth
and appearance-based background subtraction techniques to extract silhouettes
from monocular or stereoscopic videos without specially created backgrounds;
however, in this paper, we avoid discussing background subtraction but focus on
subsequent processes for representing and recognizing actions.

Given a sequence (after detecting the human silhouette using background sub-
traction), the issue at hand is how to find a representative sequence of key poses
to describe the action being seen. For a given sequence of frames, we define a
keyframe to be a frame where the average of the optical flow magnitude of fore-
ground pixels (pixels lying inside the human silhouette) reaches an extremum.
Note that the optical flow is measured in the reference frame of the foreground,
i.e. the mean optical flow of the foreground is first subtracted from the flow value
at each foreground pixel. Hence, given frames f1, ...fn, and the 2D optical flow
u1(x, y), ..., un(x, y) for each frame, we find extrema of the discrete function (see
Figure 1).

Ki =
1
Ni

∑
(x,y)∈foregroundi

|ui(x, y) − umean
i | (1)

where Ni is the number of foreground pixels and umean
i is the mean foreground

flow in frame fi. In other words, these are points of high average acceleration.
The intuition behind this criterion is that frames where this value reaches a
minimum indicate flow reversals which occur when the body reaches an extreme
pose. Frames at the maxima are points where the body is exactly in between
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Fig. 1. Keyframe extraction demonstration for two videos showing the sit and turn
actions. Plots show the value found using Eq. (1), and the resulting key frames at the
extrema.

two extreme configurations, and is in the middle of a transition undergoing large
overall movement.

Since our training videos consist of synchronized multiview data for each ac-
tion, we perform keyframe extraction in each view separately, and each view v
yields a set of key time instants {tv1, t

v
2, t

v
3...}. For each action a, the union of these

sets of key time instants from all the views gives the complete set of key time
instants {t1, t2, t3...} for that action. Corresponding to each key time instant ti,
we obtain a pose pi as a multiview set of silhouette images pi = (p1

i , p
2
i , ..., p

m
i ).
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Thus, each action is represented by a short sequence of key multiview pose pairs
as described earlier. The entire process requires no human intervention. The
keyframe extraction process is fairly robust and not sensitive to the accuracy of
optical flow estimation, since it only uses averages of the flow.

2.2 Creating a PCFG

In this section, we discuss a method to automatically construct a PCFG us-
ing our multiview training dataset, which is separate from our single-view test
dataset. Note that we are specifying a PCFG, and not learning it, hence the
term training data is not being used in the strictest sense. In the previous step,
we used multiview training videos to find a sequence of key poses for all the
training actions. From this data, we wish to find out the complete set of unique
key poses of the body. It is clear that a particular key pose (such as ’standing
upright’) may be common to many actions. However, since we used independent
training videos for each action, we must first find identify such common poses
automatically, so that we avoid redundant representations. Hence, given a set of
training actions {a, b, c...}, and the recovered multiview pose sequence pairs for
each action, i.e. a ≡ ((pa1, pa2), (pa2, pa3), ...), b ≡ ((pb1, pb2), (pb2, pb3), ...) and
so on, the task is to identify the complete set P = {p1, p2, p3..., pn} of unique
poses, where a pose pi ∈ P represents (say) equivalent poses pa1, pb4, pc2.

To do this, we can first create PO = {pa1, pa2, ..., pb1, pb2, ..., pc1, pc2, ...},
which is the set of all observed key poses (with possible repetitions) from all
actions. If the silhouettes for two poses pi and pj match in each of the m views,
the two poses are considered to be the same. We register two silhouette images
using phase correlation [16] in the cartesian and logpolar space, which is invariant
to 2D translation, rotation and scaling. In the registered images, the ratio of the
sizes of the intersection set (overlap) of the silhouettes to the union set must be
close to 1 for the silhouettes to match, which is decided with a threshold. If the
silhouettes for two poses match in all the views, the poses are considered to be
the same. This procedure allows us to map the observed set of key poses PO to
a smaller set of unique key poses P . After this is done, each action is relabeled
using the mapping from PO → P , so that we finally get representations such as
a ≡ ((p5, p2), (p2, p7), ...), b ≡ ((p3, p5), (p5, p1), ...) and so on. Now we are ready
to construct the PCFG; this process is summarized in Figure 2.

Let the symbol V denote a sequence of actions, and A denote a particular
action. Then each action sequence may be composed of one or more actions in
sequence. We allow for upto f consecutive actions with equal probability, by
using the productions

V → A|AA|....|Af

such that each production has a probability of 1/f . (We have used f = 5 in our
experiments). The symbol A denotes a specific action, and if we have g actions
A1, A2, ..., Ag in our training set, then we add the following productions, each
having a probability of 1/g:
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Fig. 2. Summary of PCFG construction

A → A1|A2|....|Ag

If we denote an ordered pair of poses by qij = (pi, pj), then an action is
represented as Ai = (qab, qbc, ..., ). Note the relationship between consecutive
indices. Using this notation, we can add a production for every action which
expands it in terms of its pose pair sequence with unit probability:

Ai → qabqbcqcd....

For each pose pair qcd, we add all possible productions which expand it into
its two constituent poses with all possible viewpoints as follows:

qcd → pu
c pv

d

Here, the superscripts u and v denote viewpoints, and we add only the produc-
tions in which u = v, or u is adjacent to v. (the probabilities are kept slightly
biased towards u = v). In this way, we force the viewpoint to remain constant
or change smoothly from one key pose to the next consecutive pose. Note that
the total probability for all productions for each qcd is normalized to unity.

This is the only portion of the grammar that can be pre-specified. The fi-
nal productions in the grammar which convert a pose-viewpoint pair pu

c to an
observed silhouette oi in the input video (the terminal symbols) and their asso-
ciated probabilities are specified at runtime.

Recall that each pose-viewpoint pair pu
c is associated with a silhouette image.

In the actual implementation, we use sequences of many persons performing
each action as training data. The only modification required because of this, is
that we average silhouettes of different persons (after registration using phase
correlation) in the same viewpoint and pose, and hence the final silhouettes
associated with each pu

c are non-binary.
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(a)

(b)

(c)

(a)

(b)

(c)

Fig. 3. (a) Eight viewpoints were used (b) Ten people performed various actions (c)
Some key poses for a person seen in one of the views

2.3 View Invariant Recognition of Pose Sequences

Given a new single camera video sequence of a person performing some actions,
we perform keyframe extraction on it to obtain an observed sequence of silhou-
ettes (s1, s2, ..., sn). We can now compare each observed silhouette sk with the
silhouette sv

i corresponding to every pose-viewpoint pair pv
i as follows: first we
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register sk to sv
i using the phase correlation procedure mentioned in the previ-

ous section to remove 2D translation, rotation and scaling. Then, we compute a
matching measure m(sk, sv

i ) between the two silhouettes, which finds the ratio
of their area of intersection to the area of their union. This measure is close to 1
for matching silhouettes. Now, we find the probability of pv

i being a good match
given the observed silhouette sk to be

P (pv
i |sk) =

m(sk, sv
i )∑

all sv
i

m(sk, sv
i )

But what we want is the probability for the production pv
i → sk which is

denoted by P (sk|pv
i ). We can write this using Bayes theorem as follows:

P (sk|pv
i ) =

P (pv
i |sk)P (sk)
P (pv

i )

We assign equal values to all P (pv
i ) (so that each pose-viewpoint can possibly

be the starting state), and the unknown P (sk) will only contribute an over-
all constant multiplying factor P (s1)P (s2)...P (sn) when we apply the parsing
algorithm. Thus, we can use the scaled likelihood P (pv

i |sk)/P (pv
i ) in place of

P (sk|pv
i ).

Fig. 4. Set of 39 unique 3D key poses extracted from all the videos in the training
dataset. Each pose is shown as a collection of silhouettes in eight viewpoints.
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Fig. 5. Parse tree obtained for the input video whose keyframes are arranged in pairs
shown on the right. The parsed sequence consists of four actions A4, A12, A7, A8 (which
we can also call walk, turn, kick, kneel respectively).

Thus, we complete our PCFG at runtime by creating this final set of pro-
ductions pv

i → sk and probabilities P (sk|pv
i ), and we can then parse the video

into the constituent actions, which yields a parse tree identifying the observed
sequence of actions and transitions in viewpoint.
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Fig. 6. Changing viewpoint: Left hand column shows detected keyframes in the in-
put (time increases from top to bottom). Person turns while walking, and then picks
something up. Each row containing eight images on the right hand side collectively
describes a 3D pose. Each element of the row shows a viewpoint. Detected viewpoints
are marked in orange. Note that the figure does not display the parse tree, but only
changes in viewpoint.
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3 Experiments

We have used the PCFG implementation in the Natural Language Toolkit (avail-
able at http://nltk.sourceforge.net), which incorporates a Viterbi-style parser for
PCFG’s. Our multiview data used for specifying the PCFG consisted of 11 ac-
tions (Walk, Jump, Pickup, Kick, Kneel, Squat, Punch, Turn, Sit, Wave, Hand-
shake) being performed by 10 people and seen from 8 views, where the cameras
are arranged in a surround configuration (see Figure 3 to see a sample of the
dataset). Note that the actions have been given names (like Kneel) for presen-
tation purposes. The extracted set of unique 3D key poses is shown in Figure 4
(text annotations are again included only for presentation purposes).

Our test dataset, which is different from the training dataset, consists of single
camera video sequences. Figure 5 shows a result for the case where a person per-
forms four actions in sequence. The most probable parse is shown in the figure,
which clearly identifies the four actions (walk, turn, kick and kneel). Figure 6
shows a sequence where a person walks while turning, and then stops to pickup
something. Only the deduced changes in viewpoint obtained after parsing are
shown, and the viewpoint change is clearly observable, since the orange squares
which indicate the deduced viewpoint shift from left to right, as we move down-
ward, indicating a smooth transition between views. Equivalently, we could also
use the case where the camera rotates around the person while the action is
being performed. The results demonstrate that the presented method is capable
of dealing with changes in viewpoint and pose simultaneously.

The methods discussed in this paper represent only a starting point for a more
advanced framework. Our ongoing work is focussed on building grammatical
representations of actions in visual, motor and natural language spaces, with
methods to translate between different spaces. Atoms or phonemes of these multi-
modal languages will no longer be whole body states (like silhouettes used in this
paper), but will incorporate individual body part state and motion information.
We have also developed methods for detecting humans in arbitrary poses in front
of arbitrary backgrounds, which eliminates the need for background subtraction
as it is used in this paper, and allows fast feature-based pose matching. The
proposed model is also being extended to include multiple actors and interaction
with objects.

4 Conclusions

To summarize, we have presented a method for view-invariant action recognition
using a probabilistic context-free grammar (PCFG). The PCFG construction
process is completely automatic and uses multiview data. The recognition process
is also completely automatic, and parses a single viewpoint video to deduce
actions and changes in viewpoint simultaneously. We have presented preliminary
experimental results to demonstrate the abilities of the proposed method, and
discussed possible extensions.
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Abstract. We present a new algorithm for segmenting a scene consisting of mul-
tiple moving dynamic textures. We model the spatial statistics of a dynamic tex-
ture with a set of second order Ising descriptors whose temporal evolution of
is governed by an AutoRegressive eXogenous (ARX) model. Given this model,
we cast the dynamic texture segmentation problem in a variational framework
in which we minimize the spatial-temporal variance of the stochastic part of the
model. This energy functional is shown to depend explicitly on both the appear-
ance and dynamics of the scene. Our framework naturally handles intensity and
texture based image segmentation as well as dynamics based video segmentation
as particular cases. Several experiments show the applicability of our method to
segmenting scenes using only dynamics, only appearance, and both dynamics and
appearance.

1 Introduction

A fundamental problem in computer vision is to separate an image into multiple regions
of coherent intensity, color or texture. In the case of intensity-based segmentation, sev-
eral approaches have been proposed over the past few decades. One of the most common
methods is based on finding a piecewise smooth approximation of the image by min-
imizing the Mumford-Shah energy functional [1]. In the case of a piecewise constant
approximation, an image u(x, y) is segmented into two regions by finding a curve C of
small length |C|, a mean intensity c1 inside C, and a mean intensity c2 outside C that
minimize the energy functional

E(C, c1, c2) =μ|C| + λ1

∫
in(C)
(u(x, y) − c1)2 dxdy + λ2

∫
out(C)
(u(x, y) − c2)2 dxdy. (1)

In order to solve this optimization problem, notice that if C were known, then the opti-
mal solution for c1 and c2 would be the mean intensities inside and outside C, respec-
tively. Thus, the main challenge in minimizing E is the computation of the optimal C,
which requires solving a partial differential equation. This has motivated the develop-
ment of several methods for efficiently representing C. Explicit methods [2] represent
C with a finite number of control points which are evolved to match the boundaries
in the scene. Implicit methods [3,4,5] represent C as the zero level set of an implicit
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function ϕ, i.e. C = {(x, y) : ϕ(x, y) = 0}, and evolve this function to match the
boundaries in the scene.

The main advantages of level set methods over explicit methods are that (1) they do
not depend on a specific parametrization of the contour, hence there is no need for re-
griding the control points during evolution, and (2) they allow the contour to undergo
topological changes such as merging and splitting during evolution. This has motivated
various extensions of level set methods from intensity-based image segmentation [4] to
texture-based image segmentation [6], motion-based video segmentation [7] and seg-
mentation of dynamic textures [8].

Dynamic textures are video sequences of nonrigid scenes whose temporal evolution
exhibits certain stationarity, e.g., video sequences of water, fire, smoke, steam, foliage,
etc. The works of [9,10] deal with scenes in which a static camera observes a sin-
gle dynamic texture. They show that by modeling the temporal evolution of the image
intensities as the output of a time invariant autoregressive moving average (ARMA)
model, it is possible to jointly recover a model for the appearance and dynamics of
the scene using classical system identification techniques [11]. Once these models have
been learnt, one can use them to generate novel synthetic sequences [12], manipulate
real ones [13], and recognize one from another [14,9]. The works of [15,16] extend
these methods to scenes containing a dynamic texture observed by a moving camera.
[15] introduces the concept of stochastic rigidity which searches for the camera motion
that leads to the dynamical model of minimum order. Solving this problem is, however,
very computationally intense. [16] models the scene with a time-varying ARMA model
from which one can compute the optical flow of the scene using the so-called dynamic
texture constancy constraint.

Existing works dealing with multiple dynamic textures include [17,8,16,18]. [17]
models the scene as the output of a mixture of ARMA models and learns the parameters
of this mixture model and the segmentation of the scene using Expectation Maximiza-
tion (EM). Unfortunately, EM-like approaches are very sensitive to good initialization.
[16] shows that when the sequence is modeled as the output of a mixture of ARMA
models, the trajectories of the image intensities live on a mixture of subspaces. The
scene is then segmented by clustering these trajectories using GPCA [19]. Unfortu-
nately, GPCA does not incorporate spatial regularization, thus the resulting contour is
typically non smooth. [18] incorporates spatial regularization by using spatial-temporal
ARX models combined with GPCA. The closest approach to ours is [8], which pro-
poses to segment the scene by minimizing an energy functional using level sets. The
energy functional depends on the subspace angles between the observability subspace
of a locally computed ARMA model and that of a reference model. This purely alge-
braic choice of the energy functional is motivated by the fact that the parameters of
an ARMA model live on a non-Euclidean space. Therefore, defining and minimizing a
statistically sensible energy functional is nontrivial.

In this paper, we conjecture that dynamical models for dynamic texture segmen-
tation need not be as complex as those for synthesis. Therefore, we propose to use
simple autoregressive exogenous (ARX) models to describe the temporal evolution of
a set of static texture descriptors. This new dynamic texture model leads to a natural
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spatial-temporal generalization of the classical Mumford-Shah energy functional for
dynamic texture segmentation that has several advantages:

1. First, the parameters of an ARX model live on a Euclidean space, allowing one to
define a statistically sensible energy functional that depends on both the appearance
and dynamics of the scene.

2. Second, the identification of the parameters of an ARX model can be done in closed
form by solving a simple linear system.

3. Third, as we will show experimentally, a good segmentation of the scene can be
obtained using ARX models of very low order. In fact, our experiments will show
the superiority of our method with respect to existing algebraic and variational
approaches which use more complex models of higher orders.

4. Finally, we demonstrate that our method can be easily extended for segmenting
dynamic textures with a moving contour.

2 Review of Intensity-Based Image Segmentation

Let u : Ω → R be a given image with domain Ω ⊂ R
2. Let C ⊂ Ω be a closed contour

dividing the image into two regions of coherent intensities. As proposed by [20] one
can represent C with an implicit function ϕ : Ω → R such that

ϕ(x, y)

⎧⎪⎨
⎪⎩

> 0 if (x, y) ∈ out(C)
= 0 if (x, y) ∈ C

< 0 if (x, y) ∈ in(C)
. (2)

Since this representation of C is not unique, one typically chooses ϕ(x, y) to be the
signed distance from (x, y) to C, i.e. |∇ϕ| = 1 almost everywhere.

The goal of Mumford-Shah segmentation is to divide Ω into regions of coherent
intensities by minimizing the energy functional (1). The work of Chan and Vese [4]
proposes a level set implementation of (1) in which a piecewise constant approximation
c1H(ϕ(x, y)) + c2(1 − H(ϕ(x, y))) of u(x, y) is found by minimizing

E(ϕ, c1, c2) = μ

∫
Ω

|∇H(ϕ(x, y))| + λ1

∫
Ω

(u(x, y) − c1)2(1 − H(ϕ(x, y)))

+ λ2

∫
Ω

(u(x, y) − c2)2H(ϕ(x, y)),
(3)

where H(ϕ) is the heaviside function which is 1 if ϕ ≥ 0 and 0 if ϕ < 0.
The minimization of E with respect to ϕ, c1 and c2 is usually done using an alter-

nating minimization procedure. Assuming that c1 and c2 are known, one computes ϕ as
the stationary solution of the partial differential equation (PDE)

∂ϕ

∂t
= δ(ϕ)

(
μ∇ ·

( ∇ϕ

|∇ϕ|

)
+ λ1(u(x, y) − c1)2 − λ2(u(x, y) − c2)2

)
, (4)
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where δ(ϕ) = dH(ϕ)
dϕ . Assuming now that ϕ is known, the variables c1 and c2 are

simply given by the mean intensities inside and outside of C, respectively. Iterating the
updates for ϕ, c1 and c2 until convergence yields the final implicit function ϕ whose
zero level set is the desired contour segmenting the image. This method is guaranteed
to converge to a local minimum, because the cost functional is always positive and also
non-increasing if the implementation of the algorithm is done carefully.

3 Dynamic Texture Segmentation

In this section, we propose a variational approach for segmenting multiple dynamic
textures in an image sequence. Our algorithm is conceptually very similar to the method
described in the previous section. The main difference is that instead of incorporating
only image intensities in the cost functional, we also consider dynamics and texture
information. Therefore, rather than finding regions of coherent intensity, we find regions
of coherent dynamics and texture.

For the sake of simplicity, in Section 3.1 we assume that the boundary of the dy-
namic texture is static and propose a segmentation approach based solely on dynamics
and intensities. We model the temporal evolution of the image intensities as the output
of a mixture of ARX models whose parameters describe both the mean intensity and
dynamics of each region. Under this model, we propose a generalization of Mumford-
Shah segmentation to the temporal domain. Although the model does not incorporate
spatial texture, the experiments will show that it is already appropriate for segmenting
certain classes of dynamic textures. In Section 3.2 we extend this model to incorporate
both texture and dynamics. The spatial texture at each frame is modeled with a set of
second order Ising descriptors whose temporal evolution is governed by an ARX model.
The segmentation algorithm minimizes an energy functional by alternating between the
identification of the ARX models, which can be done linearly, and the computation of
the contour using a level set implementation. In Section 3.3 we extend our segmentation
approach to dynamic textures with a moving contour.

3.1 Segmentation Using Dynamics and Mean Intensity

Modeling the Dynamics: Suppose we have F frames of an image sequence u(x, y, f),
where u(x, y, f) denotes the intensity of pixel (x, y) in the f th frame. We assume that
the image intensities are the output of a mixture of ARX models of order p. That is, for
each pixel (x, y), there is an ARX model j such that

u(x, y, f) = aj
0 +

p∑
i=1

aj
iu(x, y, f − i) + w(x, y, f), (5)

where aj = [aj
0 · · · aj

p] ∈ R
1×(p+1) are the ARX parameters for region Ωj ⊂ R

2 and

w(x, y, f) i.i.d∼ N(0, σ2) is the associated noise. Notice that this ARX model incor-
porates the spatial-temporal mean intensities in the parameter a0. The standard ARX
model does not include this term, and requires subtraction of the temporal mean inten-
sity at each pixel in order for it to be applicable. Therefore, using a standard ARX model
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would only be useful in detecting differences in dynamics, but would not be able to deal
with dynamic textures with different mean intensities. Recall that the method used in
[8] uses standard ARMA models, which also require the subtraction of the temporal
mean intensities.

Variational Method of Segmentation: In order to segment the video sequence ac-
cording to the different ARX models, we propose a spatial-temporal extension of the
level set approach described in Section 2. We replace the last two terms in (3) by the
spatial-temporal mean squared prediction error to model (5):

E =μ

∫
Ω

|∇H(ϕ(x, y))|dxdy

+ λ1

∫
Ω

F∑
f=p+1

[(u(x, y, f) − c1(x, y, f))2](1 − H(ϕ(x, y)))dxdy

+ λ2

∫
Ω

F∑
f=p+1

[(u(x, y, f) − c2(x, y, f))2]H(ϕ(x, y))dxdy,

(6)

where

cj(x, y, f) = aj
0 +

p∑
i=1

aj
iu(x, y, f − i) j = 1, 2. (7)

This definition for the cost functional makes intuitive sense, because if w is zero
mean Gaussian noise and λ1 = λ2 = λ, then E can be written as

E = μ

∫
Ω

|∇H(ϕ(x, y))|dxdy + λ

∫
Ω

F∑
f=p+1

w(x, y, f)2dxdy. (8)

Therefore, the last term is simply the spatial-temporal variance of the noise w(x, y, f).
This observation makes our cost function both algebraically and statistically meaning-
ful, unlike the cost functional in [8], which depends only on the algebraic properties of
the ARMA models.

In order to minimize E in (6), we generalize the classical Mumford-Shah segmenta-
tion method described in Section 2. Assuming that a1 and a2 are known, we solve for
the implicit function ϕ as the stationary solution of the PDE:

∂ϕ

∂t
= δ(ϕ)

(
μ∇ ·

( ∇ϕ

|∇ϕ|
)

+ λ1

F∑
f=p+1

(u(x, y, f) − c1(x, y, f))2

− λ2

F∑
f=p+1

(u(x, y, f) − c2(x, y, f))2
)
.

(9)
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Given ϕ, we need to update the ARX parameters a1 and a2 from the intensities of
the pixels within Ω1 and Ω2, where Ω1 and Ω2 are the regions inside and outside
the contour C, respectively. The problem of identifying the parameters of a single-
input single-output (SISO) ARX model is a standard system identification problem [21].
Since in our problem each region has multiple pixels, we simply need to extend the
standard identification methods to multiple outputs, which we do by minimizing E
with respect to a1 and a2. Setting the partial derivatives of E with respect to a1 and a2

to zero leads to the following system of linear equations:

ajU j
f = bj

f j = 1, 2 and f = p + 1, · · · , F. (10)

The matrix Uf and the vector bf are given by

U j
f =

⎡
⎢⎢⎢⎢⎣

1 · · · 1
u(xj

1, y
j
1, f − 1) · · · u(xj

kj
, yj

kj
, f − 1)

...
...

u(xj
1, y

j
1, f − p) · · · u(xj

kj
, yj

kj
, f − p)

⎤
⎥⎥⎥⎥⎦

(p+1)×kj

j = 1, 2 (11)

bj
f =

[
u(xj

1, y
j
1, f) · · · u(xj

kj
, yj

kj
, f)

]
1×kj

j = 1, 2, (12)

where {(xj
1, y

j
1), · · · , (xj

kj
, yj

kj
)} is the set of pixels in Ωj for j = 1, 2. The least squares

solution to the above system of linear equations is given by:

aj = (
F∑

f=p+1

bj
f (U j

f )�)(
F∑

f=p+1

U j
f (U j

f )�)−1 j = 1, 2. (13)

Iterating the updates (9) and (13) until convergence of the implicit function ϕ and the
ARX parameters a1 and a2, leads to the final contour, which is given by the zero level
set of ϕ.

3.2 Segmentation Using Both Dynamics and Texture

In this section, we incorporate static texture information into the segmentation process.
The first step is to extract the texture information into a feature vector. We then treat
this feature vector in the same fashion as we treated the pixel intensities in the previous
method. In this way, we are able to incorporate the mean texture information of the
regions instead of the mean pixel intensities.

Representing Static Textures: We choose the Ising second order model [22] to repre-
sent the static texture at pixel (x, y) and frame f with a five dimensional feature vector
u(x, y, f) ∈ R

5. In this method, one chooses a neighborhood W of size w × w around
each pixel, and considers the set of all cliques of type i = 1, . . . , 4, Ci, where the four
types of cliques are shown in Figure 1.
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Fig. 1. The 4 clique types of the Ising second order model

For each clique c = (r, s) ∈ Ci, i = 1, . . . , 4, one defines the function

Δc(x, y, f) =
{

−1 if |u(r, f) − u(s, f)| < ε
+1 otherwise

, (14)

where ε > 0 is a user specified parameter. The ith entry of the texture descriptor is
defined as

ui(x, y, f) =

⎧⎪⎨
⎪⎩

∑
c∈Ci

Δc(x, y, f) if i �= 5

1
w2

∑
(x,y)∈W

u(x, y, f) if i = 5
. (15)

Note that the last entry of u is simply the mean intensity in a neighborhood of size w
around each pixel.

Modeling the Temporal Evolution of the Texture Descriptors: To model different
dynamic textures, we take a similar approach to the one described in Section 3.1. But
instead of working with the intensities alone, we work with the feature vectors. We
assume that the texture descriptors are the output of a mixture of ARX models of order
p. That is, for each pixel (x, y), there is an ARX model j such that

u(x, y, f) = aj
0 +

p∑
i=1

Aj
i u(x, y, f − i) + w(x, y, f), (16)

where aj
0 ∈ R

5 is now the mean texture vector and Aj
1, · · · , Aj

p ∈ R
5×5 are the ARX

parameter matrices of region Ωj . Notice that including the parameter a0 allows us to
incorporate the mean textures of a region in our algorithm, the same way including a0
in (5) allowed us to incorporate mean intensities.

Variational Method of Segmentation: The segmentation approach is a modified
version of the one described in Section 3.1. The difference is that we now work with
the texture descriptors instead of the intensities. Therefore, the cost functional is
modified as
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E =μ

∫
Ω

|∇H(ϕ(x, y))|dxdy

+ λ1

∫
Ω

F∑
f=p+1

‖u(x, y, f) − c1(x, y, f)‖2(1 − H(ϕ(x, y)))dxdy

+ λ2

∫
Ω

F∑
f=p+1

‖u(x, y, f) − c2(x, y, f)‖2H(ϕ(x, y))dxdy,

(17)

where

cj(x, y, f) = aj
0 +

p∑
i=1

Aj
i u(x, y, f − i) j = 1, 2 (18)

with aj
0 and Aj

i the ARX parameters associated with the pixels in region Ωj .
Given the ARX model parameters, the update formula for the embedding function ϕ

is given by

∂ϕ

∂t
= δ(ϕ)

(
μ∇ ·

( ∇ϕ

|∇ϕ|
)

+ λ1

F∑
f=p+1

‖u(x, y, f) − c1(x, y, f)‖2

− λ2

F∑
f=p+1

‖u(x, y, f) − c2(x, y, f)‖2
)
.

(19)

Given ϕ, the update formula for the ARX parameters is given by

[
aj
0 Aj

1 · · · Aj
p

]
= (

F∑
f=p+1

Bj
f (U j

f )�)(
F∑

f=p+1

U j
f (U j

f )�)−1 j = 1, 2, (20)

which is an extended version of equation (13). The matrices U j
f and Bj

f are built from
the pixel feature vectors as follows

U j
f =

⎡
⎢⎢⎢⎢⎣

1 · · · 1
u(xj

1, y
j
1, f − 1) · · · u(xj

kj
, yj

kj
, f − 1)

...
...

u(xj
1, y

j
1, f − p) · · · u(xj

kj
, yj

kj
, f − p)

⎤
⎥⎥⎥⎥⎦

(5p+1)×kj

(21)

Bj
f =

[
u(xj

1, y
j
1, f) · · · u(xj

kj
, yj

kj
, f)

]
(5p+1)×kj

, (22)

where the pixels {(xj
1, y

j
1), · · · , (xj

kj
, yj

kj
)} belong to region Ωj . We then update ϕ and

the ARX parameters in an iterative manner until convergence.
In our implementation, we assume that the ARX parameter matrices are diagonal.

This implies that the five entries of the feature vector u(x, y, f) are the outputs of five
decoupled scalar ARX models. Therefore, we can estimate the ARX parameters inde-
pendently for each entry of u. This assumption significantly reduces the computational
complexity of the method.
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3.3 Segmentation of Dynamic Textures with Moving Boundaries

So far, we have only talked about dynamic textures with fixed boundaries. We now
consider the case in which the boundaries of the regions also vary with time. In order to
track the moving boundaries, we apply the method described in Section 3.2 to a moving
window of frames in time, which is of size F > p. More specifically, the algorithm
works as follows:

1. Given a user specified embedding ϕ0 representing an initial contour, apply the seg-
mentation method described in Section 3.2 to frames 1, . . . , F . This results in a
new embedding, ϕ1.

2. Use ϕ1 as an initial embedding, and apply the segmentation method of Section 3.2
to frames 2, . . . , F + 1. This results in a new embedding ϕ2.

3. Repeat the previous step for all the remaining frames of the sequence.

Therefore, at every frame f , we have an embedding ϕf , which in turn gives us a contour
Cf . In this way, we are able to follow the moving boundaries of the regions, provided
that the sampling frequency of the video is high enough, so that the boundaries do not
move significantly in the F adjacent frames.

4 Experimental Results

In this section, we present experiments performed on various types of sequences using
the different methods introduced in the previous sections. We first compare the methods
described in this paper to each other, to emphasize the essence of every step involved
in the development of our dynamic texture segmentation method. We then compare
the results of our most general method to those from the original implementation of
the existing methods used in [8] and [16]. We take the sequences from [8] and [16] in
order to make fair comparisons among the methods. Finally, we present results on a real
sequence taken from a raccoon caught on a river. For all sequences, the pixel intensities
are normalized between 0 and 1, and the orders of the ARX models are manually set to
p = 2.

4.1 Comparison of the Methods Introduced in This Paper

In this section, we compare the performance of the following methods:

1. Method 1: The method introduced in Section 3.1 with a0 set to zero. This method
only detects differences in the dynamics of the regions, and requires the temporal
mean intensity at each pixel to be subtracted from the sequence.

2. Method 2: The method introduced in Section 3.1. This method detects differences
in the dynamics or mean spatial-temporal intensities of the regions.

3. Method 3: The method introduced in Section 3.2 with parameters w = 3 pixels and
ε = 0.02. This method successfully segments dynamic textures.

Figure 2 shows the performance of the methods on the ocean dynamics se-
quence. This is a video sequence of the ocean in which the regions in the circle and
the square move twice as fast as the background. Thus, the two dynamic textures are
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(a) Initial contour (b) Method 1 (c) Method 2 (d) Method 3

Fig. 2. Results of Methods 1-3 on the ocean dynamics sequence

(a) Initial contour (b) Method 1 (c) Method 2 (d) Method 3

Fig. 3. Results of Methods 1-3 on the ocean intensity sequence

(a) Initial contour (b) Method 1 (c) Method 2 (d) Method 3

Fig. 4. Results of Methods 1-3 on the ocean appearance sequence

identical in appearance, but differ in dynamics. Notice that all the methods successfully
segment the sequence. This is expected, since all the methods incorporate dynamics.

Figure 3 shows the performance of the methods on the ocean intensity se-
quence, in which the region in the square has a higher mean intensity than the back-
ground. Thus, the dynamic textures are identical in dynamics, but differ in mean inten-
sity. We see that the first method fails to correctly segment the regions. This is expected,
since Method 1 can only detect variations in dynamics. On the other hand, methods 2
and 3 are successful, since they incorporate appearance as well as dynamics. Notice that
Method 3 gives smoother results than Method 2, because the last element of the feature
vector u uses a smoothened version of the image intensities in a spatial neighborhood
of size 3 × 3.

Figure 4 shows the performance of the methods on the ocean appearance se-
quence. This is a video sequence of the ocean in which the regions in the square and the
circle have been rotated by 90 degrees. Thus, the dynamic textures differ only in the tex-
ture orientation, but share the same dynamics and general appearance (grayscale values).
We see that only the last method is able to correctly segment this sequence. The other
methods fail because both the dynamics and mean intensities of the two regions are the
same.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Segmenting Dynamic Textures 137

4.2 Fixed Boundary Dynamic Texture Segmentation Results and Comparison

In this section, we show the results of our most general method (Method 3) on various
sequences containing dynamic textures with fixed boundaries, and compare them to
those of state-of-the-art methods. Figures 5 to 7 show a comparison of our method and
the method used in [8], using the same sequences and initializations as in [8]. Figure 5
shows results on the ocean dynamics sequence. Figure 6 shows the results on the
ocean appearance sequence. Figure 7 shows the results on the ocean smoke
sequence which contains both smoke and sea water. Notice that our method gives a
more accurate segmentation than the method in [8], even though we use a significantly
smaller number of frames and a simpler dynamical model of significantly lower order

(a) Initial contour (b) Intermediate step (c) Final contour (d) Result from [8]

Fig. 5. (a)-(c) The result of our dynamic texture segmentation method on the ocean dynamics
sequence. (d) The result from [8] for the same sequence.

(a) Initial contour (b) Intermediate step (c) Final contour (d) Result from [8]

Fig. 6. (a)-(c) The result of our dynamic texture segmentation method on the
ocean appearance sequence. (d) The result from [8] for the same sequence.

(a) Initial contour (b) Intermediate step (c) Final contour (d) Result from [8]

Fig. 7. (a)-(c) The result of our dynamic texture segmentation method on the ocean smoke
sequence. (d) The result from [8] for the same sequence.
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for each region. In [8], the order of the ARMA model for each region is p = 10 and the
number of frames is F = 120 on all the sequences, whereas we use ARX models of
order p = 2, and F = 20 in our method.

4.3 Moving Boundary Dynamic Texture Segmentation Results and Comparison

An important improvement of our method over the method in [8] is that we can handle
regions with moving boundaries. This is mainly because our method can successfully
segment dynamic textures using a significantly smaller number of frames and a much
lower order for the ARX models. We present the performance of our method for moving
boundaries using the same sequence and initialization as in [8]. We choose the order of
the regions to be p = 2 and the temporal window size to be F = 5 for this sequence.
Figure 8 shows the results on the ocean fire sequence containing both fire and sea
water. One can see that our method can track the moving boundary of the fire, whereas
in [8] the boundary is not successfully detected even in one frame.

We also compare our results against those from [16]. Figure 9 shows the
ocean grass sequence in which the region inside the square is taken from grass
moving with the wind, and the background is sea water. The order of the regions is
again p = 2, and the temporal window size is F = 5 in our method. Notice that our
algorithm is generally successful, but makes some mistakes at the top left corner of
the sequence. The first reason for this is that the water does not have a uniform texture
or dynamics all over the image plane; in fact, the top left corner is darker and moves
more slowly compared to the other parts of the water. The second reason is that the
grass region does not have significant dynamics to it. Therefore, that specific part of the
water region is similar to the grass in both appearance and dynamics. Notice also that

(a) Method 3, frame 5 (b) Method 3, frame 15 (c) Method 3, frame 30

(d) Method 3, frames 40 (e) Method 3, frame 70 (f) Method in [8]

Fig. 8. (a)-(e) Results of our moving boundary segmentation method on various frames of the
ocean fire sequence. (f) The result from [8] for the same sequence.
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(a) Method 3 (b) Method in [16]

(c) Method 3 (d) Method in [16]

Fig. 9. (a),(c) Results of our moving boundary segmentation method on two frames of the
ocean grass sequence. (b),(d) Results from [16] for the same sequence.

the method in [16] gives a bigger rectangle than the true boundary of the grass region,
whereas our result is closer to the true boundary. However, the method in [16] does
not make the mistake at the upper left corner of the sequence. This is because it only
incorporates dynamics, and does not take appearance into account.

4.4 Experimental Results on a Real Sequence

In this section, we present the results of our moving boundary dynamic texture segmen-
tation algorithm applied to a video taken from a raccoon caught on a river. The sequence

Fig. 10. Results of our moving boundary segmentation method on various frames of the raccoon
sequence
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contains 100 frames in total. The size of the temporal window is chosen as F = 5 and
the order of the ARX models is chosen to be p = 2.

Figure 10 shows the performance of the algorithm on tracking the boundary of the
raccoon throughout the sequence. Notice that the algorithm performs fairly well on this
challenging sequence.

5 Conclusions and Future Work

We have introduced a new method for segmenting dynamic textures that combines Ising
texture descriptors, ARX dynamical models and level set methods. In spite of its sim-
plicity, our experiments showed that our method performs better than existing algebraic
and variational approaches to dynamic texture segmentation, not only in terms of speed
and accuracy, but also in its ability to track regions with moving boundaries in a se-
quence.

However, we have only used manually set orders for the dynamical models associ-
ated with each region. Moreover, different regions in a sequence are modeled with the
same order. Future work includes combining our method with model selection tech-
niques for automatic order selection.
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Abstract. In this paper we propose a novel approach for the spatial
segmentation of video sequences containing multiple temporal textures.
This work is based on the notion that a single temporal texture can
be represented by a low-dimensional linear model. For scenes containing
multiple temporal textures, e.g. trees swaying adjacent a flowing river,
we extend the single linear model to a mixture of linear models and seg-
ment the scene by identifying subspaces within the data using robust
generalized principal component analysis (GPCA). Computation is re-
duced to minutes in Matlab by first identifying models from a sampling
of the sequence and using the derived models to segment the remaining
data. The effectiveness of our method has been demonstrated in several
examples including an application in biomedical image analysis.

1 Introduction

Modeling motion is a fundamental issue in video analysis and is critical in video
representation/compression and motion segmentation problems. In this paper
we address a special class of scenes, those that contain multiple instances of
so-called temporal texture, described in [11] as texture with motion.

Previous works on temporal texture usually focused on synthesis with the
aim of generating an artificial video sequence of arbitrary length with percep-
tual likeness to the original. Prior schemes usually model the temporal texture
using either a single stochastic process or dynamical model with stochastic per-
turbation [4,3]. When a dynamical model is used, modern system identification
techniques are applied. The artificial sequence is then generated by extending
the stochastic process or stimulating the dynamical system. A critical issue with
these approaches is that they can only handle sequences with homogeneous tex-
ture or only one type of motion in the scene. Scenes with multiple motions or
non-homogeneous regions are usually beyond the scope of this approach as only
a single model (stochastic process or dynamical system) is adopted for modeling
purposes.
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A similar problem occurs when segmenting textures within a static image.
While a single linear model (the Karhunen-Loeve transformation or PCA) is op-
timal for an image with homogeneous texture [12], it is not the best for modeling
images with multiple textures. Instead, a scheme for modeling the image with
mixture models is needed with a distinct model for each texture. The difficulty
in this scheme is that the choice of models and the segmentation of the image
usually fall into a “chicken-and-egg” situation, that is, a segmentation implies
some optimal models and the selection of models imply a segmentation of the
image. However, if neither models or segmentation are known initially it is very
difficult to achieve both simultaneously without using iterative methods such as
expectation maximization (EM) or neural networks [9], which unfortunately are
either sensitive to initialization or computationally expensive.

Recently, it has been shown that the “chicken-and-egg” cycle can be broken if
linear models are chosen. Using a method called generalized principal component
analysis (GPCA), the models and data segmentation can be simultaneously es-
timated [14,6]. For static images, this method has been used for representation,
segmentation, and compression [8,5]. In this paper, we adopt this approach for
spatially segmentation of multiple temporal textures in video sequences.

For a video sequence with multiple regions containing different textures or
motions, we need to segment the temporal textures spatially and model them
separately. As single temporal texture has been shown to be approximately mod-
eled using an autoregressive process (the spatial temporal autoregressive model,
or STAR) in [11], we formulate the problem of modeling and segmentation of
multiple temporal textures as a problem of fitting data points to a mixture of
linear models and solve for these models using GPCA.

Our approach differs from most other works in texture-based segmentation,
temporal texture, dynamic texture, and motion texture in several aspects. First,
our goal is to segment the regions in the video sequence based on the dynami-
cal behavior of the region. Therefore, our data points should reflect both local
texture and temporal dynamics. Second, as we are not studying the temporal
segmentation, we do not use the single image as our data point. Instead we use
the stack of local patches at fixed image coordinates over time to form the data
points. Third, we do not perform video synthesis at this point even though our
work can be the basis for synthesis. Thus it is not necessary for us to fully model
the noise or deviation of the data from the linear models. As demonstrated in this
paper, the mixture linear models can effectively segment the temporal textures
in the video sequence.

Related works. Our work is closely related to other works on video dynamics
including temporal, dynamic, or motion textures, a primary difference being
that most of these works treat the texture elements as sequences of whole image
frames. A common goal of such research is to synthesize a new sequence of
arbitrary length with perceptual likeness to the original. In [11], the texture is
treated as an autoregressive process, and the model used for synthesis is derived
statistically using the conditional least squares estimator. In [4], the sequence
is modeled as a linear system with Gaussian input. By identifying the system
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matrices, the texture model is determined and a new sequence is generated by
driving the system with noise. In [3], the sequence is also modeled as a linear
system and the system matrices are identified with a novel factorization and are
used for synthesis. In [10], instead of using a dynamical model, the authors define
a metric between images so that the sequence can be extended in a natural way
with minimal difference between consecutive images. In [6] and [7], GPCA is
used to temporally segment the video sequence using mixture linear dynamical
models.

Our work is also related to image representation and combined color and
texture segmentation methods where images are divided into blocks of pixels.
The commonly used image standard JPEG projects the image blocks onto a
fixed set of bases generated by discrete cosine transform [2]. In [1], image blocks
are used as data points for combined color and texture segmentation using EM
algorithm. In [8], a set of mixture linear models are used to model images via
the GPCA algorithm.

The method adopted in this paper is similar to that in [8] where image blocks
observed over time are treated as data points. However, as we show later, the
method presented in this paper is a more generalized form of the autoregressive
model.

Notations. Given a video sequence s with N images of the size m × n, we use
s(x, y, t) to denote the pixel of the tth image at location (x, y). In addition we
set s(x, y) to be the union of the pixels s(x, y, i) (i = 1, · · · , N). With a little
abuse of notation, we also call s(x, y) the pixel (x, y) of the video sequence.

2 Mixture of Linear Models for Temporal Textures

Given a sequence s of N images, in order to study the texture (both spatial and
temporal) around the pixel s(x, y), we apply an l × l window centered at s(x, y)
and denote the resulting l × l × N volume as B(x, y). We then represent the
volume B(x, y) as the vector x(x, y) ∈ �Nl2 through a simple reshaping.

Fig. 1. An l × l sliding window is applied to the pixel (x, y) for each frame, producing
an l × l × N volume. The data point x(x, y) is a reshaping of the volume into an
Nl2-dimensional vector.
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2.1 Linear Model for Single Temporal Texture

In [11], the authors have shown that the temporal texture can be modeled using
a spatial temporal autoregressive model (STAR). The STAR model is

s(x, y, t) =
p∑

i=1

φis(x + Δxi, y + Δyi, t + Δti) + a(x, y, t), (1)

where the index i (1 ≤ i ≤ p) indicates the p-neighbors of the signal s(x, y, t) and
a(x, y, t) is a Gaussian noise. With the noise a(x, y, t) unknown, we approximate
the above formula as

[
1 −φ1 · · · −φp

]
⎡
⎢⎣

s(x,y,t)
s(x+Δx1,y+Δy1,t+Δt1)

...
s(x+Δxp,y+Δyp,t+Δtp)

⎤
⎥⎦ ≈ 0. (2)

In other words, the (p + 1)-dimensional vector

[s(x, y, t), s(x + Δx1, y + Δy1, t + Δt1), · · · , s(x + Δxp, y + Δyp, t + Δtp)]
T

(3)
can be approximately fitted by a lower dimensional subspace (p-dimensional
hyperplane). An important fact is that given a suitable choice of window size
l, the signal s(x, y, t) with its p neighbors could just be entries of our Nl2-
dimensional data point x(x, y). Therefore, the data points xi within the same
temporal texture can be fitted by the same subspace, and since Nl2 � p for
large enough l and N , the dimension of the subspace is much lower than Nl2.

2.2 Mixture Linear Models

While a single temporal texture can be modeled by a single linear model, mul-
tiple temporal textures can be better modeled using a mixture of linear models.
This notion is further supported by our observation that reduced-dimensional
representations of data points xi obtained from sequences containing multiple
temporal textures form multiple linear structures. As shown in Figure 2, the mul-
tiple linear (subspace) structure is visible in a very low dimensional projection of
the data points. In Figure 2, the data points xi obtained from a video sequence of
water flowing down a dam face are projected to 3-D space via principal compo-
nent analysis (PCA). Instead of forming several clusters, the projected 3-D points
form several linear structures. We contend that the data should be segmented
from the linear structures present in the reduced-dimensional representation as
shown in Figure 3. Thus given the data points xi ∈ �Nl2 (i = 1, · · · , r), we first
generate their low-dimensional projection yi by calculating the singular value de-
composition of the matrix X = [x1 − x̄, · · · ,xr − x̄] such that USV T = X with
x̄ being the average of xi (i = 1, · · · , r). Then we have the projected coordinates
matrix Y = [y1, · · · ,yr] ∈ �q×r such that

Y = SqVq
T = Uq

T [x1 − x̄, · · · ,xr − x̄] , (4)
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Fig. 2. Left and Middle: two images from a 300-frame sequence of water flowing down
a dam. Right: the 3-D projection of the data points with N = 300 and l = 5. Different
colors identify different groups segmented using GPCA as described later.

Fig. 3. The process of grouping the high-dimensional data points (blocks of image
pixels) into low-dimensional space using mixture linear models (subspaces)

where q is the dimension of the projection with q � Nl2, Uq and Vq are the
first q columns for the matrices U and V , and Sq is the first q × q block of the
matrix S.

As the pixel block B(x, y) around pixel s(x, y) contains both the spatial tex-
ture and temporal dynamics information around the pixel s(x, y), for textures
(both spatial and temporal) with different complexity and dynamics of differ-
ent orders, the corresponding linear models should have different dimensions.
Therefore, given the low-dimensional representation y(x, y) for each pixel (x, y),
we need to segment the yi into different low-dimensional linear models with
(possibly) different dimensions.

3 Identification of the Mixture Linear Models

3.1 Generalized Principal Component Analysis (GPCA)

GPCA is an algorithm for the segmentation of data into multiple linear struc-
tures [14,13,6]. The algorithm is non-iterative, segmentation and model identi-
fication are simultaneous. In this paper we adopt the robust GPCA algorithm,
which recursively segments data into subspaces to avoid an incomplete discovery
of models [6]. For example, as shown in Figure 4, data sampled from a combina-
tion of linear models may appear as though it comes from one relatively higher
dimensional model e.g. the union of points on two distinct lines forms a plane.
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Fig. 4. The data points on the plane and the two lines are first segmented as two
planes and then the plane formed by the lines is further segmented into two lines. In
the scenario depicted here there are two levels of recursion.

3.2 Unsupervised vs. Supervised Learning

For the segmentation problem, each pixel should be assigned to the appropriate
model. This implies that for a sequence with frames sized 640 × 480, more than
300, 000 data points must be segmented. For current unsupervised learning al-
gorithms, including GPCA, the computational cost would be very significant if
all data points were used. In order to reduce the computational burden we turn
the modeling problem from a purely unsupervised learning scenario to a hybrid
scenario, i.e. we sample enough data points (in this case about 800 to 2,000 sam-
pled either periodically or randomly) to learn the mixture of K linear models
and then assign the remaining data points to the closest linear model. The sam-
pled data is projected into q-dimensional space via the maximum-variance linear
transformation Uq ∈ �q×Nl2 before applying GPCA. The K subspaces that are
identified by GPCA can be described by their orthonormal basis Dj ∈ �q×kj

(j = 1, · · · , K) with kj being the dimension of the jth subspace. Then given any
data point y(x, y) it is assigned to the mth model such that

m = arg max
j

‖ DT
j y(x, y) ‖ . (5)

Overall, the steps for segmenting the temporal texture spatially can be sum-
marized as following follows:

4 Experiments and Results

Water flow over dam. Figure 2 shows three images taken from a 300 frame
sequence of water flow at a dam. There are multiple regions where the water
dynamics are different: flow on the face of the dam, waves in the river at the
bottom of the dam, and turbulence around the transition. We chose l = 5,
q = 4, and used an even tiling of the sequence to produce 1,200 training data
points. Applying GPCA to these low-dimensional data points, we obtained four
groups as shown in Figure 5 and the model basis for each group as well. The
dimensions of the four models are 3, 3, 2, and 2. Using the basis for each model,
the remaining pixels were assigned according to the above algorithm to produce
the segmentation shown in Figure 6. Not only does the segmentation fit our visual
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(Spatial segmentation of temporal textures). Given a video sequence s, a block
size l, a reduced dimension q, and an upper bound n on the system order:

1. Data sampling. Periodically sample 800-2000 pixels s(xi, yi) and generate the
corresponding Nl2-dimensional data points xi.

2. Dimensionality Reduction. Compute the reduced-dimensional projection of yi

as the first q principal components of xi and record the projection matrix Uq .
3. Segmentation and identification of mixture linear models. Use robust

GPCA to compute the segmentation of the training data yi and the bases for
the linear subspaces Dj(j = 1, · · · , K).

4. Segmentation on all pixels. For each pixel (border regions excluded) derive the
data point x based on the surrounding l×l block B. Obtain its reduced-dimensional
representation y by projecting along Uq . Finally assign it to the mth group based
on (5).

Fig. 5. Left: the mean image of the 300-frame sequence. Right: the training pixels from
a 5 × 5 tiling are segmented into four classes.

observation, the model dimensions also reflect the relative complexity of their
textures. For groups 3 and 4, the water flows fast with simple dynamics and the
texture is smoother. Reflected in the subspaces, they have lower dimensions (2
compared to 3). For the group 1 and 2, the water has more waves and turbulence,
the corresponding subspaces have dimensions 3.

Trees on the river bank. Figure 7 shows three images taken from a 159-
frame sequence of bushes swaying in a breeze on a river bank. The segmentation
results are shown in Figure 8, the dimensions of the linear models are 7, 7, 6,
and 6 respectively. While the scene is in general more complex than the previous

Fig. 6. The four classes of pixels for the sequence of water flowing down the dam
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Fig. 7. Three images from the sequence with bushes in a breeze on the river bank

Fig. 8. The four classes of pixels. The first two classes belong to 7-dimensional sub-
spaces and the last two classes belong to 6-dimensional subspaces.

example, the classes containing motion (classes 1 and 2) have higher dimensions
than the relatively more static classes.

Segmentation of micro-ultrasound images. In the last example we show the
results of applying our method to a 300-frame micro-ultrasound video sequence
of a mouse liver. Two sample frames are shown in Figure 9. Figure 10 shows
the segmentation results where the mouse’s skin is clearly segmented out due to
both its texture and motion due to periodic respiration.

Fig. 9. Two sample frames from the sequence of micro-ultrasound of the mouse liver

Fig. 10. The four classes of pixels. In the last class, the elongated crescent structure
contains the skin of the mouse.

5 Conclusion

In this paper, we proposed a novel approach for the spatial segmentation of video
sequences containing multiple temporal textures. We extended the single linear
model, used for homogeneous temporal textures, to a mixture linear model for
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scenes containing multiple temporal textures. Model identification and segmen-
tation were implemented with a robust GPCA algorithm. A sampling process
was used to identify models on a subset of the total data and the resulting
models were used for complete segmentation, reducing runtime to minutes in
Matlab. The effectiveness of our method was demonstrated in several examples
and has applications in video synthesis and other areas including biomedical
image analysis.
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Abstract. An online approach is proposed for Video registration of dynamic
scenes, such as scenes with dynamic textures, moving objects, motion parallax,
etc. This approach has three steps: (i) Assume that a few frames are already reg-
istered. (ii) Using the registered frames, the next frame is predicted. (iii) A new
video frame is registered to the predicted frame.

Frame prediction overcomes the bias introduced by dynamics in the scene,
even when dynamic objects cover the majority of the image. It can also overcome
many systematic changes in intensity, and the “brightness constancy” is replaced
with “dynamic constancy”.

This predictive online approach can also be used with motion parallax, where
non uniform image motion is caused by camera translation in a 3D scene with
large depth variations. In this case a method to compute the camera ego motion
is described.

1 Introduction

When a video sequence is captured by a moving camera, motion analysis is required for
many video editing and video analysis applications. Most methods for image alignment
assume that a dominant part of the scene is static, and also assume brightness constancy.
These assumptions are violated in many natural scenes, which consist of moving objects
and dynamic background, cases where most registration methods are likely to fail.

A pioneering attempt to deal with dynamic scenes was suggested in [1]. In his work,
the entropy of an auto regressive process was minimized with respect to the motion pa-
rameters of all frames. But the implementation of this approach may be impractical for
many real scenes. First, the auto regressive model is restricted to scenes which can be
approximated by a stochastic process, and it can not deal with dynamics such as walking
people. In addition, in [1] the motion parameters of all frames are computed simulta-
neously, resulting in a difficult non-linear optimization problem. Moreover, extending
this method to deal with multiple dynamic textures requires segmenting the scene into
its different textures [2]. With the proposed approach, no segmentation is needed.

Unlike computer motion analysis, humans can distinguish easily between the mo-
tion of the camera and the internal dynamics in the scene. For example, we can virtu-
ally align an un-stabilized video of a sea, even when the waves are moving with the
wind. The key to this human ability is an assumption regarding to the simplicity and

R. Vidal, A. Heyden, and Y. Ma (Eds.): WDV 2005/2006, LNCS 4358, pp. 151–164, 2007.
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predictability of a natural scene and of its dynamics: It is assumed that when a video is
aligned, the dynamics in the scene become smoother and more predictable. This allows
humans to track the motion of the camera even when no apparent registration informa-
tion exists. We therefore try to replace the “brightness constancy assumption” with a
“dynamics constancy assumption”.

This predicability assumption is used as a basis for our online registration algorithm:
given a new frame of the sequence, it is aligned to best fit the prediction generated from
the preceding frames. The prediction is done using video synthesis techniques [3,4,5],
and the alignment is done using common methods for parametric motion computation
[6,7]. Alternating between prediction and registration results in a robust online regis-
tration algorithm which can handle complex scenes, having both dynamic textures and
moving objects.

There is a major difference between the prediction step in our approach and previous
work on video completion or on dynamic textures. In these approaches the goal was to
create a good looking video. Making a video to look good is not only difficult, but also
makes the video less faithful to the original data. In our case we use the prediction only
for motion computation. While this requires that many image regions will be correctly
predicted, other regions may not be predicted accurately. In general the predicted image
does not have to look “perfect”, and the prediction process allows us to use simpler
and faster prediction schemes, as will be explained in more details in Sec. 2. Even
when the frame prediction step does not give a perfect prediction of the next frame, the
registration algorithm can still find the correct image motion since the error is mostly
unbiased.

A specific model for the scene dynamics can also be incorporated when it is avail-
able. An example for such a model is motion parallax. In this case the video sequence
will be represented in a space-time volume (or an epipolar volume), constructed by
stacking all input images into an x-y-t volume (as was introduced by Bolles et. al. [8]).
Frame prediction is possible in the space time volume, since when the camera moves at
a constant velocity, image points move on straight lines in the space-time volume. Ex-
tending these straight lines according to the motion of the camera is a good prediction
for the next frame.

The predictive approach to motion parallax can also be extended to handle 2D
camera translations and also camera rotations. Setups describing camera motions which
are applicable to this work are shown in Fig. 6. These cases can be used for view syn-
thesis [9].

2 Video Alignment with Dynamic Scenes

Video motion analysis traditionally aligns two successive frames. This approach works
well for static scenes, where one frame predicts the next frame up to their relative mo-
tion. But when the scenes are dynamic, the motion between the frames is not enough to
predict the successive frame, and motion analysis between such two frames is likely to
fail. We propose to replace the assumptions of static scenes and brightness constancy
with a much more general assumption of consistent image dynamics: “What happened
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in the past is likely to happen in the future”. In this section we will describe how the
next frame can be predicted from prior images, and how this prediction can be used for
image alignment.

2.1 Predictive Video Assumption

Let a video sequence consist of frames I1 . . . IN . A space-time volume V is constructed
from this video sequence by stacking all the frames along the time axis, V (x, y, t) =
It(x, y). The “consistent image dynamics” assumption implies that when the volume is
aligned (e.g., when the camera is static), we can predict a large portion of each image
In = V (x, y, n) from the preceding frames I1 . . . In−1. We will denote the space-time
volume constructed by all the frames up to the kth frame by V (x, y,

−→
k ). According to

the “consistent image dynamics” assumption, we can find a prediction function over the
preceding frames such that

In(x, y) = V (x, y, n) ≈ Predict(V (x, y,
−−−→
n − 1)). (1)

Predict is a non parametric extrapolation function, predicting the value of each pixel
in the new image given the preceding space-time volume. This prediction should use
the consistent image dynamics assumption, and will be described in the next section.

When the camera is moving, the image transformation induced by the camera motion
should be added to this equation. Assuming that all frames in the space time volume
V (x, y,

−−−→
n − 1) are aligned to the coordinate system of the (n − 1)th frame, the new

image In(x, y) can be predicted by

In ≈ Tn(Predict(V (x, y,
−−−→
n − 1))). (2)

Tn is a 2D image transformation between frames In−1 and In, and is applied on the
predicted image. Applying the inverse transformation on both sides of the equation
gives

T−1(In) ≈ Predict(V (x, y,
−−−→
n − 1)). (3)

This relation is used in the predictive registration Scheme.

2.2 Next Frame Prediction

The prediction of the next frame given the aligned space-time volume of preceding
frames is closely related to dynamic texture synthesis [10,11]. However, dynamic tex-
tures are characterized by repetitive stochastic processes, and do not apply to more
structured dynamic scenes, such as walking people. We therefore prefer to use non-
parametric video extrapolation methods [3,4,5] for prediction. These methods assume
that each small space-time block has likely appeared in the past, and thus a new image
can be predicted by using similar blocks from earlier video portions. This is demon-
strated in Fig. 1. Various video interpolation or extrapolation methods differ in the way
they enforce spatio-temporal consistency of all blocks in the synthesized video. How-
ever, this problem is not important for prediction, as our goal is to achieve a good
alignment rather than a pleasing video.
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u

In=V(x,y,n)
In-1=V(x,y,n-1)

I0=V(x,y,0)

(a) (b)

Fig. 1. Frame Prediction using Space-Time Block Search (a) For all blocks bordering with time
(n− 1), a best matching block is searched in the space-time volume. Once such a block is found,
the pixel in front of this block is copied to the corresponding position in the predicted frame
Ip

n(x, y) (b) The new frame In is not aligned to Frame In−1, but to a predicted frame that can be
computed from the preceding space-time volume.

Leaving out the spatio-temporal consistency requirement, we are left we the fol-
lowing simple video completion scheme: Assume that the aligned space time volume
V (x, y,

−−−→
n − 1) is given, and a new image Ip

n is to be predicted. We use the SSD (sum
of square differences) as a distance between space-time blocks. The distance d between
each pair of space-time blocks Wp and Wq is given by,

d(Wp, Wq) =
∑

(x,y,t)

(Wp(x, y, t) − Wq(x, y, t))2. (4)

As shown in Fig. 1, for each pixel (x, y) in image In−1 we define a space-time block
Wx,y,n−1 whose spatial center is at pixel (x, y) and whose temporal boundary is at
time n − 1 (future frames can not be used in an online approach). We then search in
the space time volume V (x, y,

−−−→
n − 2) for a space-time block with the minimal SSD to

block Wx,y,n−1. Let Wp = W (xp, yp, tp) be the most similar block, spatially centered
at pixel (xp, yp) and temporally bounded by tp. The value of the predicted pixel Ip

n(x, y)
will be taken from V (xp, yp, tp +1), the pixel that appeared immediately after the most
similar block. This prediction follows the “consistent image dynamics” assumption:
given that the two space time blocks are similar, we assume that their continuations are
also similar. While a naive search for each predicted pixel may be exhaustive, several
accelerations can be used as described in Sec. 2.6.

2.3 The Predictive Registration Scheme

The online registration scheme for dynamic scenes uses the predictions described ear-
lier. As already mentioned, we assume that the image motion of a few frames can be
estimated with traditional robust image registration methods [12,7]. Such initial align-
ment is used as “synchronization” for computing the motion parameters of the rest of
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the sequence. In the following we assume that the motion of the first K frames has
already been computed. The predictive registration scheme can be described by the
following steps:

1. Let n = K + 1.
2. Align all frames in the space time volume V (x, y,

−−−−→
(n − 1)) to the coordinate system

of the frame In−1.
3. Predict the next image of the sequence given the previous frames

Ip
n = Predict(V (x, y,

−−−−→
(n − 1))).

4. Compute the motion parameters (The 2D image transformation T−1
n ) by aligning

the new input image In to the prediction Ip
n.

5. Increase n by 1, and return to Step 2. Repeat until reaching the last frame of the
sequence.

The 2D image alignment in Step 2 is performed using direct methods for parametric
motion computation [6,7]. Outliers are marked during this alignment as described in the
next section.

2.4 Masking Unpredictable Regions

Real scenes always have a few regions that can not be predicted. For example, people
walking in the street often change their behavior in an unpredictable way, e.g. raising
their hands or changing their direction. In these cases the prediction will fail, resulting
in outliers. The alignment can be improved by estimating the predictability of each
region, where unpredictable regions get lower weights during the alignment stage. To
do so, we incorporate a predictability score M(x, y, t) which is estimated during the
alignment process, and is later used for future alignment.

The predictability score M is computed is the following way: Given that the input
image In and its prediction Ip

n are aligned, the difference between the two images is
computed, and each pixel (x, y) receives a predictability score according to the frame
differences around this pixel. From this we compute a binary predictability mask which
measures the bias of the prediction,

M(x, y, n) =

{
1 if

�
(In−Ip

n)2�
I2

x+I2
y

< r

0 otherwise,
(5)

where the summation is over a window around (x, y), and r is a threshold (We usually
used r = 1). This is a conservative scheme to mask out pixels in which the residual
energy will likely bias the registration. The predictability mask Mn(x, y) = M(x, y, n)
is used in the alignment of frame In+1 to frame Ip

n+1.

2.5 Fuzzy Prediction

Unlike many applications (such as video completion or compression) which use image
prediction, video registration is not bounded to a single deterministic prediction. In-
stead, experiments with real sequences showed that better results can be obtained using
a fuzzy prediction. Such a fuzzy prediction can be obtained by incorporating not only
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the best candidate for each pixel, but also the best K candidates (We used 1-5 can-
didates for each pixel). The various predictions of each pixel can easily be combined
using a simple summation of the error terms:

Tn = argminT

∑
x,y,k

λx,y,k(T−1(In)(x, y) − Ip
n(x, y, k))2 (6)

where Ip
n(x, y, k) is the kth prediction for the pixel In(x, y). The weights λx,y,k of each

prediction are based on distance of this prediction as defined in Eq. 4 and are given by:

λx,y,k = e
−d(Wp,Wq)2

2σ

(we used σ = 1). Note that the weights for each pixel does not necessarily sum to one,
and therefore the registration mostly relies on pixels which are easiest to predict.

2.6 Accelerating the Frame Prediction

The most expensive stage of the predictive alignment is the prediction stage. In a naive
implementation an exhaustive search is used, making this stage very slow. To enable fast
prediction we have implemented several modifications which accelerate substantially
this stage. Some of these accelerations are not valid for general video synthesis and
completion techniques, as they may reduce the rendering quality of the prediction. But
rendering quality can be sacrificed for registration.

Limited Search Range: Video segments may be very long, and searching the entire
history is impractical. Moreover, the periodicity of most objects is usually of a short
period. We have therefore limited the search for similar space-time cubes to a small
volume in both time and space around each pixel. Typically, we searched up to 10-20
frames backwards.

Using Pyramids:We assume that the spatio-temporal behavior of objects in the video
can be recognized even in a lower resolution. Under this assumption, we constructed
a Gaussian pyramid for each image in the video, and used a multi-resolution search
for each pixel. Given an estimate of a matching cube from a lower resolution level, we
search only a small spatial area in the higher resolution level. The multi-resolution
framework allows to search a wide spatial range and to compare small space time
cubes.

Summed Area Tables: Since the prediction uses a sum of squares of values in sub-
blocks in both space and time (See Eq. 4), we can use summed-area tables [13] to
compute all the distances for all the pixels in the image in O(N · Sx · Sy · St) where
N is the number of pixels in the image, and Sx, Sy and St are the search ranges in the
x,y and t directions respectively. This saves the factor of the window size (Typically
5 × 5 × 5) over a direct implementation. This step cannot be used together with the
multi-resolution search, as the lookup table changes from pixel to pixel, but it can still
be used in the highest resolution level, where the search range is the largest.
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2.7 Handling Alignment Drift

Predictive alignment follows Newton’s First Law: An object in uniform motion tends
to remain in that state. If we initialize our registration algorithm with a small motion
relative to the real camera motion, predictive registration will continue this motion for
the entire video. In this case the background will be handled as a slowly moving object.
This is not a bug in the algorithm, but rather a degree of freedom resulting from the
’predictive video assumption’, as there is no doubt that a constant moving scene is a
predictable one.

To eliminate this degree of freedom we incorporate a prior bias, and assume that
some of the scene is static. This is done by aligning the new image to both the predicted
image and the previous image, giving the previous image a low weight. In our experi-
ments we gave a weight of 0.1 to the previous frame and a weight of 0.9 to the predicted
frame.

3 Examples: Video Registration of Dynamic Scenes

In this section we show various examples of video alignment for dynamic scenes. A few
examples are also compared to regular direct alignment as in [6,7]. The alignment was
used for video stabilization, and the results are best seen in the enclosed video. To show
stabilization results on paper, we have averaged the frames of the stabilized video. The
average image of a stabilized video is sharp, while the average image of video which is
not stabilized is blurred.

Figures 2 and 3 compare predictive registration to a traditional direct alignment [6,7].
Both scenes include moving objects and flowing water, and a large portion of the image
is dynamic. In spite of the dynamics, after prediction the entire image can be used for
the alignment. In these examples we did not use any mask to remove unpredictable
regions, and used the entire image for alignment.

Figures 4 and 5 show two more examples of applying predictive alignment to chal-
lenging scenes. In these scenes, the prediction of some of the regions was not good
enough (Parts of the falls and the fumes in the ’waterfall’ video, and some actions in
the ’festival’ video), so predictability masks (as described in Section 2.4) were used to
exclude unpredictable regions from motion computation.

4 Video Alignment with Motion Parallax

When the camera’s velocity and frame rate are constant, the time of frame capture is
proportional to the location of the camera along the camera path. In this case, and for
a static scene, the image features are arranged in an EPI plane (an x-t slice of the x-
y-t volume) along straight lines, since the projections of each 3D point are only along
a straight line in this plane [8]. Each straight line represents a different image feature
corresponding to a point in the 3D world, and the slope of this line is inversely pro-
portional to the depth of that point. Points at infinity, for example, will create straight
lines parallel to the t axis, since their projection into the image is constant, and does not
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Fig. 2. The water flow in the input movie (up), as well as the moving pinguin, create a difficult
scene for alignment. The video was registered using predictive alignment, an was compared to
regular alignment. An average of 40 frames in the stabilized sequence is shown. Using a tra-
ditional 2D parametric alignment the sequence is very unstable, and the average image is very
blurry (lower left). With predictive alignment the registration is much better (lower right). Videos
of the stabilized sequences, are included in the attached video.

Fig. 3. In the original video (left) the water and the bear are dynamic, while the rocks are static.
Average images of 40 frames are shown, with traditional 2D parametric alignment (middle) and
with the predictive alignment (right). The sharper average shows the superiority of predictive
alignment. Videos of the stabilized sequences, are given in the attached video.

change with camera translation. Closer points move faster in the image, and the straight
line representing them will have a small angle with the x axis.

The space time volume was used in [14] to differentiate between different depth
layers in a video. Object were even removed from the scene, and the vacated space has
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Fig. 4. This waterfall sequence poses a challenging task for registration, as most of the scene is
covered with falling water. The video was stabilized with predictive alignment (using a rotation
and translation motion model). An average of 40 frames in the stabilized video is shown to eval-
uate the quality of the stabilization. The dynamic regions are blurred only in the flow direction,
while the static region remain relatively sharp after averaging.

Fig. 5. While the dynamic crowd in this festival makes alignment a real nightmare, predictive
alignment had no problems. Three original frames are shown at the top. The panorama is stitched
from the video after alignment by frame averaging. The scene dynamics is visible by ghosting,
and the static background is clearly well registered.

been filled in using the straight-line property of the EPI lines. We suggest to use this
property also as a prediction cue for image alignment in the presence of strong parallax.

4.1 Prediction with Parallax

When the velocity of the camera varies, the time of frame capture is no longer propor-
tional to the location of the camera. Image features are no longer arranged along straight
lines in the EPI plane. The predictive approach to the computation of the camera motion
assumes that a few frames are captured with a constant velocity. Only the correct cam-
era motion can predict the next frame from the straight space-time lines computed for
the preceding frames. We will denote the slopes of the EPI lines as “shape parameters”,
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which will be estimated in the predictive alignment process together with the motion
parameters of the camera.

The Space-Time approach can also be extended to handle 2D camera translations. In
this case, the prediction will be based on a continuation of EPI planes. Setups describing
camera motions which are applicable the proposed analysis are shown in Fig. 6.

Fig. 6. Common setups for 1D and 2D camera motions. (a) 1D motion - The camera moves along
a straight line. (b) 2D motion - Traditional light field capturing device. The camera can move to
arbitrary locations along the u-v table.

The general scheme of the predictive alignment for this case is as following:

1. Initialize the shape parameters corresponding to the first image in the space-time
volume to be spatially uniform (scene in infinity).

2. Compute motion parameters (translation components and optionally rotation com-
ponents) by aligning a new frame to the current aligned volume using the straight-
line property.

3. Estimate the shape parameters (the slopes of EPI lines or the slope of EPI planes)
for the new frame.

4. Return to 2. Repeat until reaching the last frame of the sequence.

Fig. 7 demonstrates this scheme for the case of a camera translating along a straight
line.

4.2 Estimating the Shape Parameters (EPI slopes)

The shape parameters are needed only for a subset of image points, as they are used to
compute only a few motion parameters. The process can be formulated in the following
way: Let k be the index of the frame for which we estimate the shape and let Tn,k =
(un − uk, vn − vk)t be the translation of the optical center of the camera between the
nth and the kth frames.
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In=I(x,y,tn)

In-K=I(x,y,tn-K)

In-1=I(x,y,tn-1)
δt

x
t

Fig. 7. Given the shape parameters (EPI slopes), only the correct motion parameter tn can predict
the next frame In from the space-time volume

Following [15], The shape parameter d = d(x, y, k) in the image point (x, y) mini-
mizes the error function:

Err(d) =
∑
n�=k

wd
n ·

∑
x,y∈W

(d · �It · Tn,k + In − Ik)2, (7)

Where �I is the gradient of the image Ik in the point (x, y), and W is a small window
around (x, y). (A 5x5 window was used). The minimum of this quadratic equation is
obtained by:

d = −
∑

n�=k wd
n ·

∑
x,y �It · Tn,k · (In(x, y) − Ik(x, y))∑
n�=k wd

n ·
∑

x,y(�It · T )2
(8)

The weights wd
n determine the influence of each frame on the shape estimation. Most

of the weights are set to zero, except for frames which are close in time or in space
(currently we use the five closest frames).

For each window in Ik, the computation described above is repeated iteratively until
convergence, where in each iteration, the relevant regions in all the frames {In} with
wd

n �= 0 are warped back towards Ik according to Tn,k and the current estimate of d.
As we do not need to estimate the shape parameters for every pixel, only the best

points are used:

1. We do not use points with a small gradient in the direction of motion. The threshold
is selected according to the desired number of points to use.

2. We do not use points for which the iterative shape computation algorithm fails to
converge.

4.3 Predictive Alignment with Parallax

The alignment concept is demonstrated in Fig. 7. Given the shape parameters (EPI
slopes) computed from the previously aligned frames, the motion parameters should be
those that best predict the next frame. This is computed using a slight modification of
the Lucas-Kanade direct 2D alignment as described in [6].
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Assume that all the images I0 . . . Ik−1 have already been aligned, and let the kth

frame be the new video frame. We also know of the slops d(x, y, n) for n < k. To com-
pute the motion of the new frame, we minimize the following prediction error function:

Err(p, q) =
∑
n�=k

wa
n ·

∑
x,y

(p
∂In

∂x
+ q

∂In

∂y
+ In − Ik)2, (9)

where the displacement p, q of each point is given by:

p(x, y, n) = (un − uk) · d(x, y, n)
q(x, y, n) = (vn − vk) · d(x, y, n). (10)

Note the use of the derivatives ∂In

∂x and ∂In

∂y which are estimated from In rather then
from Ik, since we haven’t computed d(x, y, k) yet, and therefore we must align frame
Ik to the rest of the images.

The coefficients wa
n are also used to weight the importance of each frame in the

alignment. For example, frames which are far off, or contain fewer information should
receive smaller weights. For each image whose location un, vn is unknown we set
wa

n = 0.
Currently we use about three preceding frames to predict the next frame. When the

camera is translating on a plane we use several additional frames which are not neigh-
bors in time but whose optical centers are close. In this way we reduce the drift in the
motion computations.

Handling rotations: Camera rotation can also be handled. Assuming small camera
rotations and using the approximation cos(α) ≈ 1 and sin(α) ≈ α the following
motion model is obtained:

p(x, y, n) = (un − uk) · d(x, y, n) + a − α · y
q(x, y, n) = (vn − vk) · d(x, y, n) + b + α · x.

(11)

a and b denote the small pan and tilt which induce an approximately uniform displace-
ment in the image. α denotes small camera rotation about the z axis. For larger rotations,
or with small focal length, full rectification can be used.

Using Eq. 11 with the error function in Eq. 9, and setting to zero the derivative with
respect to the motion parameters (camera shift u, v and rotational components α, a, b),
gives a set of five linear equations with five unknowns.

If the camera is restricted to translate along a straight line (without the loss of gener-
ality this line is horizontal), then vn = vk = 0, and we are left with fewer unknowns -
one unknown for translation only, and four unknowns for translation plus rotation.

4.4 Example: Predictive Alignment with Parallax

The image in Fig. 8 is part of a video taken from a moving car having substantial motion
parallax. The differences between the mosaic images obtained by 2D image alignment
and the mosaic images obtained by predictive alignment is evident.
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(a)

(b)

Fig. 8. Mosaicing from a translating camera with motion parallax. (a) Using regular 2D para-
metric image alignment. Distortions occur when image motion alternates between far and near
objects. (b) Using predictive alignment all cars are properly scaled.

5 Concluding Remarks

An approach for video registration of dynamic images has been presented. The image
dynamics can be a result of dynamics in the scene, or a result of motion parallax. The
frames in such video sequences can be aligned by predicting the next frame from the
preceding frames.

Frame prediction for alignment can be done much faster than other video comple-
tion approaches, resulting in a robust and efficient registration. The examples show
good registration of very challenging dynamic images that were previously considered
impossible to align.

Most methods which address the problem of videos with multiple dynamic patterns
do a segmentation of the scene. Due to its non parametric nature, the proposed approach
can find the motion parameters without any segmentation.

The predictive alignment was also shown to be applicable to motion parallax, when
a camera is moving in a static scene. The stronger assumptions that can me made for
motion parallax result in more accurate alignment.

A possible future challenge can be the development of predictive alignment when
motion parallax and scene dynamic are combined. This combination is not simple, as
motion parallax depends on the dynamic of the camera, which has no relation to the
dynamic of the scene.
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Abstract. Dynamic texture is an extension of texture to the temporal domain. 
Description and recognition of dynamic textures has attracted growing atten-
tion. In this paper, a new method for recognizing dynamic textures is proposed. 
The textures are modeled with volume local binary patterns (VLBP), which are 
an extension of the LBP operator widely used in still texture analysis, combin-
ing the motion and appearance together. A rotation invariant VLBP is also  
proposed. Our approach has many advantages compared with the earlier ap-
proaches, providing a better performance for two test databases. Due to its rota-
tion invariance and robustness to gray-scale variations, the method is very 
promising for practical applications. 

1   Introduction 

Dynamic textures or temporal textures are textures with motion [1]. Dynamic textures 
(DT) encompass the class of video sequences that exhibit some stationary properties 
in time [2]. There are lots of dynamic textures in real world, including sea-waves, 
smoke, foliage, fire, shower and whirlwind. Description and recognition of DT is 
needed, for example, in video retrieval systems, which have attracted growing atten-
tion. Because of their unknown spatial and temporal extend, the recognition of DT is 
a challenging problem compared with the static case [3].   

Polana and Nelson classify visual motion into activities, motion events and dy-
namic textures [4]. Recently, a brief survey of DT description and recognition of 
dynamic texture was given by Chetverikov and Péteri [5]. In their paper, the existing 
approaches to temporal texture recognition are classified into five classes: methods 
based on optic flow, methods computing geometric properties in the spatiotemporal 
domain, methods based on local spatiotemporal filtering, methods using global spatio-
temporal transforms and, finally, model-based methods that use estimated model 
parameters as features. Methods based on optic flow [3,4,6-13] are currently the most 
popular ones [5], because optic flow estimation is a computationally efficient and 
natural way to characterize the local dynamics of a temporal texture. Péteri and Chet-
verikov [3] proposed a method that combines normal flow features with periodicity 
features, in an attempt to explicitly characterize motion magnitude, directionality and 
periodicity. Their features are rotation-invariant, and the results are promising. But 
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they did not consider the multi-scale properties of DT. Lu et al. proposed a new 
method using spatio-temporal multi-resolution histograms based on velocity and ac-
celeration fields [10]. Velocity and acceleration fields of different spatio-temporal 
resolution image sequences are accurately estimated by the structure tensor method. 
Their method is also rotation-invariant and provides local directionality information. 
Fazekas and Chetverikov compared normal flow features and regularized complete 
flow features in DT classification [14]. They conclude that normal flow contains in-
formation on both dynamics and shape. Saisan et al. [15] applied a dynamic texture 
model [1] to the recognition of 50 different temporal textures. Despite this success, 
their method assumes stationary DTs well-segmented in space and time, and the accu-
racy drops drastically if they are not. Fujita and Nayar [16] modified the approach 
[15] by using impulse responses of state variables to identify model and texture. Their 
approach shows less sensitivity to non-stationarity. However, the problem of heavy 
computational load and the issues of scalability and invariance remain open. Fablet 
and Bouthemy introduced temporal co-occurrence [8,9] that measures the probability 
of co-occurrence in the same image location of two normal velocities (normal flow 
magnitudes) separated by certain temporal intervals. Recently, Smith et al. dealt with 
video texture indexing using spatiotemporal wavelets [17]. Spatiotemporal wavelets 
can decompose motion into local and global, according to the desired degree of detail. 
Otsuka et al. [18] assume that DTs can be represented by moving contours whose 
motion trajectories can be tracked. They consider trajectory surfaces within 3D spa-
tiotemporal volume data and extract temporal and spatial features based on the tan-
gent plane distribution. The latter is obtained using 3D Hough transform. Two groups 
of features, spatial and temporal, are then calculated. The spatial features include the 
directionality of contour arrangement and the scattering of contour placement. The 
temporal features characterize the uniformity of velocity components, the ash motion 
ratio and the occlusion ratio. The features were used to classify four DTs.  Zhong and 
Sclaro [19] modified [18] and used 3D edges in spatiotemporal domain. Their DT 
features are computed for voxels taking into account the spatiotemporal gradient. 

Two key problems of dynamic texture recognition are: 1) how to combine motion 
features with appearance features, and 2) how to define features with robustness to 
affine transformations and insensitivity to illumination variations. To address these 
issues, we propose a novel, theoretically and computationally simple approach in which 
dynamic textures are modeled with volume local binary patterns. The local binary pat-
tern (LBP) histogram model developed for ordinary texture [20,21] is extended to a 
volume model. The sequence is thought as a 3d volume in X Y T− − space. A new 
volume LBP is defined for the sequence. The texture features extracted in a small local 
neighborhood of the volume are not only insensitive with respect to translation and 
rotation, but also robust with respect to illumination changes.  

2   Volume Local Binary Patterns 

The main difference between a dynamic texture and ordinary texture is that the notion 
of self-similarity central to conventional image texture is extended to the spatiotempo-
ral domain [5]. Therefore, combining motion and appearance together to analyze DT is 
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well justified. Varying lighting conditions greatly affect the gray scale properties of 
dynamic texture. At the same time, the textures may also be arbitrarily oriented, which 
suggests using rotation-invariant features. Therefore, it is important to define features, 
which are robust with respect to gray scale changes, rotations and translation. So we 
propose the volume local binary patterns (VLBP) to address these problems. 

The basic LBP operator was first introduced as a complementary measure for local 
image contrast [20].  It is a gray-scale invariant texture primitive statistic, which has 
shown excellent performance in the classification of various kinds of textures [21]. 
For each pixel in an image, a binary code is produced by thresholding its neighbor-
hood with the value of the center of pixel. A histogram is created to collect up the 
occurrences of different binary patterns. The definition of neighbors can be extended 
to include all circular neighborhoods with any number of pixels. In this way, one can 
collect larger-scale texture primitives.  

2.1   Basic Volume LBP 

To extend LBP to DT analysis, we define dynamic texture V  in a local neighborhood 
of a monochrome dynamic texture sequence as the joint distribution of the gray levels 
of 3 3( 1)P P+ ;  image pixels. 

, ,0 , 1 , ,0 , 1 ,0 , 1 ,
( , , ..., , , , ..., , , ..., , ).

c c c c c c c c c
t L c t L t L P t c t t P t L t L P t L c

V v g g g g g g g g g− − − − − + + − +=      (1)  

where gray value 
,

c
t c

g  corresponds to the gray value of the center pixel of the local 

volume neighborhood, 
,

c
t L c

g
−

and 
,

c
t L c

g
+

 correspond to the gray values of the center 

pixels in the previous and posterior neighboring frames with time interval L ; 

,
( , , ; 0, ..., 1)

t p c c c
g t t L t t L p P= − + = − correspond to the gray values of P  equally 

spaced pixels on a circle of radius ( 0)R R ;  in image t , which form a circularly 
symmetric neighbor set. 

         
                (a)                                               (b)                                                (c) 

Fig. 1. (a) Volume in dynamic texture (Right volume with 1L = , while left volume with 2L = ). 
(b) Circularly symmetric neighbor sets in volume ( 1R =  and 8P = ). (c)  Neighboring points 
along the helix on the surface of cylinder ( 4P = ). 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



168 G. Zhao and M. Pietikäinen 

Suppose the coordinates of 
,

c
t c

g  are ( , , )
c c c

x y t , the coordinates of 
,

c
t p

g  are given 

by (( sin(2 ), cos(2 ), )
c c c

x R p P y R p P tπ π− + , and the coordinates of 
,

c
t L p

g ±  are 

given by (( sin(2 ), cos(2 ), )
c c c

x R p P y R p P t Lπ π− + ± . The values of neighbors 

that do not fall exactly on pixels are estimated by closest point. Fig.1(a) shows the 
volume model with various time interval L  in dynamic texture sequence, and Fig.1(b) 

illustrates circularly symmetric volume neighbor sets for ( ),P R . Fig.1(c) illustrates 

the sampling along the helix in the cylinder constructed with the neighboring frames 

and circularly symmetric neighbor set. The purple point is the center pixel 
,

c
t c

g , and 

the red points are sampling points in the neighboring frames and circles. Blue lines 
illustrate the connection of neighboring frames and cyan lines the order of sampling.  

To get gray-scale invariance, the distribution is thresholded similar to [21]. The 

gray value of the volume center pixel (
,ct c

g ) is subtracted from the gray values of the 

circularly symmetric neighborhood  
,

( , , ; 0, ..., 1)
t p c c c

g t t L t t L p P= − + = − , giving: 

, , ,0 , , 1 ,

, ,0 , , 1 ,

,0 , , 1 , , ,

( , , ..., ,
          , , ..., ,
         , ..., , ).

c c c c c c

c c c c c

c c c c c c

t L c t c t L t c t L P t c

t c t t c t P t c

t L t c t L P t c t L c t c

V v g g g g g g
g g g g g
g g g g g g

− − − −

−

+ + − +

= − − −
− −

− − −
     (2) 

Then we can get: 

, , ,0 , , 1 ,

,0 , , 1 ,

,0 , , 1 , , ,

( , , ..., ,
         , ..., ,
       , ..., , ).

c c c c c c

c c c c

c c c c c c

t L c t c t L t c t L P t c

t t c t P t c

t L t c t L P t c t L c t c

V v g g g g g g
g g g g

g g g g g g

− − − −

−

+ + − +

≈ − − −
− −
− − −

     (3) 

This is a highly discriminative texture operator. It records the occurrences of various 
patterns in the neighborhood of each pixel in a ( 2( 1) 3 2P P P+ + = + )-dimensional 
histogram. 

We achieve invariance with respect to the scaling of the gray scale by considering 
just the signs of the differences instead of their exact values: 

, , ,0 , , 1 ,

,0 , , 1 ,

,0 , , 1 , , ,

( ( ), ( ), ..., ( ),

         s( ), ..., ( ),
        ( ), ..., ( ), s( )).

c c c c c c

c c c c

c c c c c c

t L c t c t L t c t L P t c

t t c t P t c

t L t c t L P t c t L c t c

V v s g g s g g s g g

g g s g g

s g g s g g g g

− − − −

−

+ + − +

≈ − − −
− −

− − −
     (4) 

where { }1,  0
( ) .

0,  0
x

s x
x

≥= ≺  

To simplify the expression of V , we use 
0 3 1

( , ..., , ..., )
q P

V v v v v += , and  q corre-

sponds to the index of values in V  orderly. By assigning a binomial factor 2q , for 

each sign 
, ,

 s( )
c

t p t c
g g− , we transform (4) into a unique 

, ,L P R
VLBP  number that char-

acterizes the spatial structure of the local volume dynamic texture: 
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3 1

, ,

0

2 .
P

q

L P R q

q

VLBP v
+

=

= ∑      (5) 

Fig.2 gives the whole computing procedure for 
1,4 ,1

VLBP . Firstly, sampling 

neighboring points in the volume (Purple points), then thresholding its neighborhood 
with the value of the center pixel to get a binary value, and finally the VLBP code is 
produced by multiplying the thresholded  values with weights given to the corre-
sponding pixel and summing up the result. 

Let us assume we are given a X Y T× ×  dynamic texture 

( { } { } { }0, ..., 1 , 0, ..., 1 , 0, ..., 1
c c c

x X y Y t T∈ − ∈ − ∈ − ). In calculating 
, ,L P R

VLBP  

distribution for this DT, the central part is only considered because a sufficiently large 
neighborhood can not be used on the borders in this 3D space. The basic VLBP code 
is calculated for each pixel in the cropped portion of the DT, and the distribution of 
the codes is used as a feature vector, denoted by D : 

{ } { } { }
, ,( ( , , )),

       , ..., 1 , , ..., 1 , , ..., 1 .
L P RD v VLBP x y t

x R X R y R Y R t L T L

=

∈ − − ∈ − − ∈ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
     (6) 

 

Fig. 2. Procedure of 
1,4 ,1

VLBP  
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So the time complexity is O(XYT). Because the dynamic texture is looked as sets 
of volumes and their features are extracted on the basis of those volume textons, the 
VLBP combines the motion and appearance together to describe dynamic textures.   

2.2   Rotation Invariant VLBP 

Dynamic textures may also be arbitrarily oriented, and DT also often rotates. The 
most important difference between rotation in a still texture image and DT is that the 
whole sequence of the DT rotates round one axis or multi-axes (if the camera rotates 
during capturing), while the still texture rotates round one point. Therefore, we cannot 
deal with VLBP as a whole to get rotation invariant code as in [21] which assumed 
rotation round the center pixel in the static case. We first divide the whole VLBP code 

from (4) into 5 parts: 
, , ,0 , , 1 ,

,0 , , 1 ,

,0 , , 1 , , ,

([ ( )],[ ( ), ..., ( )],

         [s( ), ..., ( )],
        [ ( ), ..., ( )], s( )),

c c c c c c

c c c c

c c c c c c

t L c t c t L t c t L P t c

t t c t P t c

t L t c t L P t c t L c t c

V v s g g s g g s g g

g g s g g

s g g s g g g g

− − − −

−

+ + − +

≈ − − −
− −

− − −
. 

Then we mark those as 
preC

V , 
preN

V , 
curN

V , 
posN

V , 
posC

V  orderly, and 
preN

V , 
curN

V  

and
posN

V  represent the LBP code of neighboring points in previous, current and poste-

rior frames, respectively, while 
preC

V  and 
posC

V  represent the binary values of the cen-

ter pixels in previous and posterior frames. 

1

, , , ,

0

( )2 ,   , , .
c

P
p

t P R t p t c c c c

p

LBP s g g t t L t t L
−

=

= − = − +∑      (7) 

Using formula (7),  we can get 
, ,

c
t L P R

LBP − , 
, ,

c
t P R

LBP  and 
, ,

c
t L P R

LBP + . 

To remove the effect of rotation, we firstly use: 

, ,, ,
min{ ( , ) | 0,1, ..., 1}.

t P Rt P R

riLBP ROR LBP i i P= = −      (8) 

where ( , )ROR x i  performs a circular bit-wise right shift on the P -bit number x  i  
times [21]. In terms of image pixels, formula (8) simply corresponds to rotating the 
neighbor set in one frame clockwise so many times that a maximum number of the 
most significant bits, starting from 

, 1t P
g − , is 0. After getting the respective rotation 

variant LBP code
, , , , , ,

, ,ri ri

t L P R t P R t L P Rc c c

riLBP LBP LBP
− +

, we can combine them together to get 

the rotation invariant VLBP, and we denote it as 
, ,

ri

L P R
VLBP . 

, ,

3 2

, ,

, ,

, ,

, , , ,

( (2 1)) ( , 2 1)

                 ( , 1) ( ,1) (   1)
L P R

ri P ri

L P R

ri ri

L P R

t L P Rc

t P R t L P Rc c

VLBP VLBP and RO LBP P

RO LBP P RO LBP VLBP and

+

+

−

= − + +

+ + + +
.     (9) 

For example, for the original VLBP code 
2

(1,1010,1101, 1100,1) , its codes after 

rotating anticlockwise 90, 180, 270 degrees are 
2

(1,0101,1110,0110,1) , 

L

LL
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2
(1,1010,0111,0011,1)  and

2
(1,0101,1011,1001) respectively. Their rotation invariant 

code should be
2

(1,0101, 0111,0011,1) , and not 
2

(00111010110111)  obtained by 
using the VLBP as a whole. 

Because neighboring points are sampled in volume, the number of bins is large. If 
the number of neighboring points in one frame is P , the number of the basic VLBP 
bins is 3 22 P+ . Even for rotation invariant code, for example, the number of features for 

1,2,1

ri
VLBP  is 108. The occurrence frequencies of large number of individual patterns 

incorporated in 
, ,L P R

VLBP  or 
, ,

ri

L P R
VLBP  vary greatly and may not provide very good 

discrimination, as concluded in [21]. So to reduce the feature vector length and get 
compact features, we borrow the idea of “uniform” patterns from [21] and compute 

the rotation invariant uniform VLBP code which is denoted as 2

, ,

riu

L P R
VLBP .  

3 1

2

, , 0

, ,( ) 2)

3 3      ,

   
P

riu q
L P R q

ri
L P RVLBP

f U VLBP

P otherwise

v i
+

=

≤

+
=
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

∑ .   (10) 

where, 
3 1

1

3 1 1

' ' ' '
, , 0( )

P

q

P q q

ri
L P RU VLBP v v v v

+

=

+ −= − + −∑ . ' ' '
0 3 1' ( , ..., , ..., )q PV v v v +=  ex-

presses the code after rotation invariant transform. Superscript 2riu  reflects the use of 
rotation invariant uniform patterns that have U  value of at most 2. So the total num-

ber of 2

, ,

riu

L P R
VLBP ’s is: 3 4P + .  

3   Experiments 

To evaluate the performance of VLBP, two databases were selected for the experi-
ments. The first one is the MIT dataset, which is the most frequently used collection 
of dynamic textures so far [1]. The second one is DynTex, which is a new large  
database. 

VLBP histograms are used as texture models. The histograms are normalized with 
respect to volume size variations by setting the sum of their bins to unity. In classifi-
cation, the dissimilarity between a sample and a model VLBP distribution is measured 
using the log-likelihood statistic: 

1

( , ) log .
B

b b

b

L S M S M
=

= −∑    (11) 

where, B  is the number of bins and 
b

S  and 
b

M  correspond to the sample and model 

probabilities at bin b , respectively. Other dissimilarity measures like histogram inter-
section or Chi square distance could also be used.  

After obtaining the VLBP features on the basis of different parameters 
of L , P and R , a leave-one-group-out classification test was carried out based on the 
nearest class. If one DT includes m  samples, we separate all DT samples into m  
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groups, evaluate performance by letting each sample group be unknown and training 
on the rest 1m −  samples groups. The mean VLBP features of all 1m −  samples are 
computed as the feature for the class. The omitted sample is classified or verified 
according to its difference with respect to the class. The k-nearest neighbor method 
(k=1) is used for classification. 

3.1   Experiments on MIT Dataset 

Fourteen classes from the MIT database were used for evaluation. To the convenience 
of comparison, each sequence was divided into 8 non-overlapping subsets or samples, 
half in X ,Y and T  in the same way as in [3], as Figs. 3 and 4 show. Fig.5 lists all the 
14 classes and the different parts we used. Each column represents a class of dynamic 
texture and contains different samples of this class. First row is the top left, second 
row is the bottom left, third row is the top right, and last row is the bottom right of the 
original image. 

              

Fig. 3. Each class with 8 samples in MIT DT database 

  

Fig. 4. Two examples of segmentation in image 

 

Fig. 5. MIT DT dataset 

Classification results for the 14 MIT DT classes using rotation invariant uniform 
patterns are shown in Table 1. The best result of 100% was achieved, however, using 

the basic rotation invariant 
1,4 ,1

VLBP  (not shown in the table). Peteri and Chetverikov 

experimented on 10 classes achieving 93.8% [3]. Fazekas and Chetverikov obtained 
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95.4% on the same dataset [14]. Rahman and Murshed [22] used 9 classes of the MIT 
dataset and their classification rate was 98%, and they also gave results for 10 classes 
obtaining 86% [23]. Szummer and Picard [1] classified the MIT data based on the top 
8 matches, and obtained an accuracy of 95%. Otsuka et al. [18] used only 4 classes 
from the MIT data achieving a classification rate of 98.3%. But except [3], which 
used the same segmentation as we but with only 10 classes, all other papers used 
simpler datasets which did not include the variation in space and time. Therefore, 
these results cannot be directly compared to ours, but we can say that our approach 
provided excellent results in a more difficult experimental setup.  

Table 1. Results(%) for MIT dataset ( 2riu  is rotation invariant uniform) 

Features 2riu  
1,2 ,1

VLBP  
2 ,2 ,1

VLBP  
1,4 ,1

VLBP  
2 ,4 ,1

VLBP  
1,8 ,1

VLBP  
2 ,8 ,1

VLBP  

Results 88.39 91.07 91.96 95.54 98.21 98.21 

3.2   Experiments on DynTex Dataset 

The DynTex dataset (http://www.cwi.nl/projects/dyntex/) is a large and varied data-
base of dynamic textures. The quality of the sequences is much better than that of the 
MIT data. Fig.6 shows example DTs from this dataset. The image size is 400 300× . 

           

          

          

Fig. 6. DynTex database 

In the experiments on DynTex database, each sequence was divided into 8 non-
overlapping subsets, but not half in X ,Y and T . The segmentation position in volume 
was selected randomly. For example, we select the transverse plane with 170x = , 
lengthways plane with y= 130 , and in time direction with t=100 . These 8 samples do 

not overlap each other, and they have different spatial and temporal information. 
Sequences with the original size but only cut in time direction are also included in the 
experiments. So we can get 10 samples of each class and every sample is different in 
image size and sequence length to each other. Fig.7(a) demonstrates the segmentation, 
and Fig.7(b) shows some segmentation examples in space. These ten subsets are sym-
bolized as A_S(short sequence with original image size), A_L(long sequence with 
original image size), TL_S(short sequence with top left of image), TL_L(long se-
quence with top left of image), BL_S(short sequence with bottom left of image), 
BL_L(long sequence with bottom left of image), TR_S(short sequence with top right 
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of image), TR_L(long sequence with top right of image), BR_S(short sequence with 
bottom right of image), BR_L(long sequence with bottom right of image). We can see 
that this sampling method increases the challenge of recognition in a large database.  

 

       Fig. 7. (a) Segmentation of DT sequence               (b) Examples of segmentation in space 

Table 2 presents the overall classification rates, while Table 3 provides more de-

tailed results for each test dataset. When using the simple 2

1,2,1

riuVLBP , we get good re-

sults of over 85%. By using all 256 bins of the basic 
1,2 ,1

VLBP  provides an excellent 

performance of 91.71% (not shown in the table).  

Table 2. Results(%) in DynTex dataset ( 2riu  is rotation invariant uniform) 

Features 2riu  
1,2 ,1

VLBP  
2 ,2 ,1

VLBP  
1,4 ,1

VLBP  
2 ,4 ,1

VLBP  
1,8 ,1

VLBP  
2 ,8 ,1

VLBP  

Results 85.43 81.43 87.71 84 90.57 88.29 

Table 3 shows detailed results of all datasets in terms of rank order statistic [24], 
defined as the (cumulative) probability that the actual class of a test measurement is 
among its k  top matches; k  is called the rank. It should be mentioned that the CCR 
(Correct Classification Rate) is equivalent to the top 1. We can see that in the first 
 

Table 3. Results(%) of each test dataset using 2

1,8,1 2 ,8,3

riuVLBP +
 

Test Top 1 Top 2 Top 4 Top 5 
A_S 100 100 100 100 
A_L 100 100 100 100 
TL_S 100 100 100 100 
TL_L 100 100 100 100 
BL_S 93.55 93.55 96.77 100 
BL_L 87 96.77 100 100 
TR_S 96.77 96.77 100 100 
TR_L 90.32 96.77 100 100 
BR_S 96.77 100 100 100 
BR_L 96.77 100 100 100 
Average 96.13 98.39 99.68 100 
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four datasets: A_S, A_L, TL_S, and TL_L, a 100% accuracy is achieved. In the  
top five ranking, all the datasets are recognized correctly. This is very promising con-
sidering practical applications of DT recognition. In [14], a classification rate of 
98.1% was reported for 26 classes. However, their test and training samples were only 
different in the length of the sequence, but the spatial variation was not considered. 
This means that their experimental setup was much simpler. When we experimented 
using all 35 classes with samples having the original image size and only different in 

sequence length, a 100% classification rate was obtained with the 2

1,8,1

uVLBP feature.  

4   Discussion 

A novel approach to dynamic texture recognition was proposed, in which volume 
LBP operators are used to combine the motion and appearance together. Experiments 
on two databases with a comparison to the state-of-the-art results showed that our 
method is efficient for DT recognition. Classification rates of 100% and 92% were 
obtained for the MIT and DynTex databases, respectively, using more difficult ex-
perimental setups than in the earlier studies. Our approach is robust in terms of gray-
scale and rotation variations, making it very promising for real application problems. 

There are parameters L , P and R , that can be chosen to optimize the performance 
of the proposed algorithm.  P  determines the number of features. A large P  pro-
duces a long histogram and thus calculating the distance matrix gets slower. Using a 
small P  makes the feature vector shorter but also means losing more information. A 
small radius R  and time interval L  make the information encoded in the histogram 
more local in the spatial and temporal domain, respectively. 

Results for two DT databases and comparison with the state-of-the-art show that 
our approach is very powerful. A topic for future research is to study in more detail 
how to reduce the long feature vectors of operators with many sampling points. The 
parameter P  determines the number of features and a large value of P  could produce 
a long histogram. Sampling in specific planes from volume will be considered to 
shorten the feature vector. Moreover, multiscale extensions of the method will be 
considered, as well as ways of computing VLBP features on the basis of blocks in 
order to focus on local region characteristics. Applications to other dynamic events, 
such as facial expression recognition, will also be investigated.  

Acknowledgements 

The authors would like to thank Dr. Renaud Péteri for providing the DynTex database 
used in experiments. This work was supported by the Academy of Finland. 

References 

1. Szummer, M., Picard, R.W.: Temporal texture modeling. In Proc. IEEE International Con-
ference on Image Processing. Volume 3, (1996) 823-826 

2. Doretto, G., Chiuso, A., Soatto, S., Wu, Y.N.: Dynamic textures. International Journal of 
Computer Vision 51(2) (2003) 91-109 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



176 G. Zhao and M. Pietikäinen 

3. Péteri, R., Chetverikov, D.: Dynamic texture recognition using normal flow and texture 
regularity. In Proc. Iberian Conference on Pattern Recognition and Image Analysis (Ib-
PRIA 2005), Estoril, Portugal (2005) 223-230 

4. Polana, R., Nelson, R.: Temporal texture and activity recognition. In Motion-based Rec-
ognition. Kluwer Academic (1997) 87-115 

5. Chetverikov, D., Péteri, R.: A brief survey of dynamic texture description and recognition. 
In Proc. of 4th Int. Conf. on Computer Recognition Systems. Poland (2005) 17-26 

6. Nelson, R.C., Polana, R.: Qualitative recognition of motion using temporal texture. 
CVGIP: Image Understanding 56 (1992) 78-89 

7. Bouthemy, P., Fablet, R.: Motion characterization from temporal co-occurrences of local 
motion-based measures for video indexing. In Proc. Int. Conf. Pattern Recognition. Vol-
ume 1, Brisbane, Australia (1998) 905-908 

8. Fablet, R., Bouthemy, P.: Motion recognition using spatio-temporal random walks in se-
quence of 2D motion-related measurements. In IEEE Int. Conf. on Image Processing, 
(ICIP 2001). Thessalonique, Greece (2001) 652-655 

9. Fablet, R., Bouthemy, P.: Motion recognition using nonparametric image motion models 
estimated from temporal and multiscale co-occurrence statistics. IEEE Transactions on 
Pattern Analysis and Machine Intelligence 25 (2003) 1619-1624 

10. Lu, Z., Xie, W., Pei, J., Huang, J.: Dynamic texture recognition by spatiotemporal mul-
tiresolution histogram. In Proc. IEEE Workshop on Motion and Video Computing 
(WACV/MOTION'05). Volume 2 (2005) 241-246 

11. Peh, C.H., Cheong, L.-F.: Exploring video content in extended spatiotemporal textures. In 
Proc.1st European Workshop on Content-Based Multimedia Indexing. Toulouse, France 
(1999) 147-153 

12. Peh, C.H., Cheong, L.-F.: Synergizing spatial and temporal texture. IEEE Transactions on 
Image Processing 11 (2002) 1179-1191 

13. Péteri, R., Chetverikov, D.: Qualitative characterization of dynamic textures for video re-
trieval. In Proc. International Conference on Computer Vision and Graphics (ICCVG 
2004). Warsaw, Poland (2004) 

14. Fazekas, S., Chetverikov, D.: Normal versus complete flow in dynamic texture recogni-
tion: a comparative study. Texture 2005: 4th International Workshop on Texture Analysis 
and Synthesis, Beijing (2005). http://visual.ipan.sztaki.hu/publ/texture2005.pdf 

15. Saisan, P., Doretto, G., Wu, Y.N., Soatto, S.: Dynamic texture recognition. In Proceedings 
of the Conference on Computer Vision and Pattern Recognition. Volume 2, Kauai, Hawaii 
(2001) 58-63 

16. Fujita, K., Nayar, S.K.: Recognition of dynamic textures using impulse responses of state 
variables. In Proc. Third International Workshop on Texture Analysis and Synthesis (Tex-
ture 2003). Nice, France (2003) 31-36 

17. Smith, J.R., Lin, C.-Y., Naphade, M.: Video texture indexing using spatiotemporal wave-
lets. In IEEE Int. Conf. on Image Processing (ICIP 2002). Volume 2 (2002) 437-440 

18. Otsuka, K., Horikoshi, T., Suzuki, S., Fujii, M.: Feature extraction of temporal texture 
based on spatiotemporal motion trajectory. In ICPR. Volume 2 (1998) 1047-1051 

19. Zhong, J., Scarlaro, S.: Temporal texture recognition model using 3D features. Technical 
report, MIT Media Lab Perceptual Computing (2002) 

20. Ojala. T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with 
classification based on feature distributions. Pattern Recognition 29 (1996) 51-59 

21. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray scale and rotation invariant 
texture analysis with local binary patterns. IEEE Transactions on Pattern Analysis and 
Machine Intelligence 24(7) (2002) 971-987 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Dynamic Texture Recognition Using Volume Local Binary Patterns 177 

22. Rahman, A., Murshed, M.: Real-time temporal texture characterisation using block-based 
motion co-ocurrence statistics. In Proc. IEEE International Conference on Image Process-
ing (2004) 1593-1596 

23. Rahman, A., Murshed, M.:  A robust optical flow estimation algorithm for temporal tex-
tures. International Conference on Information Technology: Coding and Computing 
(ITCC-05). Las Vegas, USA (2005) 72–76 

24. Cutting, J.T., Proffitt, D.R., Kozlowski, L.T.: A biomechanical invariant for gait percep-
tion. J.Exp. Psych.: Human Perception and Performance (1978) 357-372 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Rao-Blackwellized Parts-Constellation Tracker

Grant Schindler and Frank Dellaert

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332
{schindler,dellaert}@cc.gatech.edu

Abstract. We present a method for efficiently tracking objects repre-
sented as constellations of parts by integrating out the shape of the
model. Parts-based models have been successfully applied to object
recognition and tracking. However, the high dimensionality of such mod-
els present an obstacle to traditional particle filtering approaches. We
can efficiently use parts-based models in a particle filter by applying Rao-
Blackwellization to integrate out continuous parameters such as shape.
This allows us to maintain multiple hypotheses for the pose of an ob-
ject without the need to sample in the high-dimensional spaces in which
parts-based models live. We present experimental results for a challeng-
ing biological tracking task.

1 Introduction

We are interested in tracking insects in video, a task complicated by the fact
that insects exhibit non-rigid motion. Like other tracking targets, such as people,
insects are physically composed of multiple parts that flex and bend with respect
to each other. We would like to model this flexible motion, which is hypothe-
sized to improve the performance of our tracker and increase the richness of the
data that can be used for subsequent analysis. As such, we adopt a model that
incorporates an object’s individual parts, modeling the joint configuration of the
parts as a whole, and modeling the appearance of each part individually. We
show how to efficiently incorporate such a model into a particle filter by treating
the shape analytically and sampling only over pose, a process commonly known
as Rao-Blackwellization. We use Expectation-Maximization (EM) to learn ap-
pearance and shape parameters for these models and perform tracking with a
Rao-Blackwellized particle filter.

We adopt the framework of [5] to model insects as flexible constellations of
parts. Though parts-based models have a long history of use in computer vision,
a powerful probabilistic formulation for modeling objects composed of flexible
parts was first offered by Burl, Weber, and Perona [2] and later extended by
Fergus, Perona, and Zisserman [5]. In their formulation, each part has a location,
appearance, and relative scale, and the shape of an object is represented as
the relative location of its parts. We apply this framework to the problem of
tracking moving objects in video. Other parts-based methods have been used
for tracking as well. A parts-based method for tracking loose-limbed people in
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Fig. 1. Parts-constellation model of a bee. We learn a joint shape distribution on part
configurations, as well as an appearance model for each part. The mean appearance
and pose of each part are shown above. Ellipses show individual part covariances. By
integrating over shape, we can efficiently incorporate such a model into a particle filter.

3D over multiple views is presented in [15], which makes use of bottom-up part-
detectors to detect possible part locations in each frame. Our method takes a
related approach, but uses an image registration technique based on the well-
known Lucas-Kanade algorithm [10] for locally registering part templates. In
contrast to [15], we are tracking a target across a single view containing many
other identical targets.

Rao-Blackwellization, as applied to particle filters, is a method to analyti-
cally compute a portion of the distribution over the state space, so as to reduce
the dimensionality of the sampled space and the number of samples used. Rao-
Blackwellized particle filters (RBPFs) have previously been applied to several
estimation problems, including insect tracking. In [9], an RBPF was used to in-
corporate subspace appearance models into particle filter tracking of insects. In
[14], the authors integrate over the 2D target positions and sample over measure-
ment target assignments to track people based on noisy position measurements
from IR sensors. In [6], de Freitas uses an RBPF for fault detection where Kalman
filters are applied over continuous parameters and samples obtained over discrete
fault states. And finally, in [12], the authors integrate over landmark locations in
a robotics application where the goal is to localize a robot while simultaneously
building a map of the environment.

2 A Bayesian Filtering Approach

Bayesian filtering is a traditional approach to the target tracking problem in
which, at time t, we recursively estimate the posterior distribution P (Xt|Z1:t)
of some state Xt conditioned on all measurements Z1:t up to time t as:

P (Xt|Z1:t) ∝ P (Zt|Xt)
∫

Xt−1

P (Xt|Xt−1)P (Xt−1|Z1:t−1) (1)

We call P (Zt|Xt) the measurement model and P (Xt|Xt−1) the motion model.
When applying a Bayes filter to the problem of parts-based tracking, the state

Xt = (Yt, St) has two components: the pose Yt of the target and the shape St
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describing the configuration of parts. The measurements Z1:t = I1:t are images
It observed at time t in a video sequence.

By analogy to equation (1), if we wanted to compute the posterior distribution
P (Yt, St|I1:t) on both pose Yt and shape St, the corresponding Bayes filter would
be computed by integrating over both the pose Yt−1 and the shape St−1 at the
previous time step t − 1:

P (Yt, St|I1:t) = kP (It|Yt, St)∫
Yt−1

∫
St−1

P (Yt, St|Yt−1, St−1)P (Yt−1, St−1|I1:t−1) (2)

By integrating over the current shape St on both sides of equation 2 we obtain
a marginal filter on the pose Yt alone :

P (Yt|I1:t) = k

∫
St

P (It|Yt, St)×∫
Yt−1

∫
St−1

P (Yt, St|Yt−1, St−1)P (Yt−1, St−1|I1:t−1)

In our model, we will assume that (a) the motion of the target is independent
of shape, and (b) that there is no temporal coherence to the shape. Taking into
account these independence assumptions the joint motion term factors into the
product of a simpler motion model P (Yt|Yt−1) and a shape model P (St|Yt):

P (Yt, St|Yt−1, St−1) ∝ P (Yt|Yt−1)P (St|Yt)

Thus the final form of our exact marginal Bayes filter is:

P (Yt|I1:t) = k

∫
St

P (It|Yt, St)P (St|Yt)×∫
Yt−1

∫
St−1

P (Yt|Yt−1)P (Yt−1, St−1|I1:t−1) (3)

We describe a Monte Carlo approximation of this Bayes filtering distribution in
Section 4.

3 The Parts-Constellation Model

To fully specify the above Bayes filter in equation (3), we need to define an
appearance model P (It|Yt, St), a shape model P (St|Yt), and a motion model
P (Yt|Yt−1). Here, we describe our appearance and shape models in more detail.
The motion model does not depend on shape, and is thus not specific to our
approach.

3.1 Appearance Model

If we define the image I as the union of foreground and background image regions
F (Y, S) and B(Y, S), whose position and extent have a functional dependence
on both pose Y and shape S, the appearance model factors as:
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P (I|Y, S) = P (F (Y, S), B(Y, S)|Y, S)
= PF (F (Y, S))PB(B(Y, S))

Here PF and PB are distributions on the foreground and background models, re-
spectively. This factorization is valid if we assume no overlap between foreground
and background regions in the image. Similar to the approach taken by [2] and
[5], we can arrive at a formulation of the image likelihood purely in terms of F ,
the foreground region of interest, by multiplying both sides of this expression by
a constant:

= PF (F (Y, S))PB(B(Y, S))
PB(F (Y, S))
PB(F (Y, S))

= PB(F (Y, S), B(Y, S))
PF (F (Y, S))
PB(F (Y, S))

∝ PF (F (Y, S))
PB(F (Y, S))

Finally, we break the foreground F into multiple regions Fn corresponding to
the individual parts of the model, obtaining a product of likelihood ratios

P (I|Y, S) ∝
∏
n

PFn(Fn(Y, S))
PB(Fn(Y, S))

(4)

where each part of the foreground Fn is evaluated according to a different fore-
ground distribution PFn .

3.2 Shape Model

Shape is modeled as a joint Gaussian distribution P (S|Y ) on part positions
and is parameterized by θshape = {μshape, Σshape}. For example, if there are N
parts and each part has both a location and an orientation, then Σshape is a full
3N × 3N covariance matrix. This is similar to the shape model from [5]. The
shape model is conditioned on pose Y simply because the mean μshape is defined
with respect to the target’s current position.

4 A Rao-Blackwellized Particle Filter

Our Bayes filtering distribution can be approximated with a particle filter [7,8,3]
in which the posterior P (Yt−1, St−1|I1:t−1) is represented by a set of weighted
particles. Using a traditional particle filter, we would sample a pose Yt from the
motion model P (Yt|Yt−1), sample a shape St from the shape model P (St|Yt), and
then weight this joint sample using the appearance model P (It|Yt, St). However,
these joint samples on pose and shape live in such a high-dimensional space that
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approximating the posterior distribution requires an intractably large number of
particles, potentially making a parts-based model infeasible.

In a “Rao-Blackwellized” particle filter (RBPF) [13] we analytically integrate
out shape and only sample over pose. Thus, we can achieve the same per-
formance as a traditional particle filter with vastly fewer particles. As in [9],
we approximate the posterior P (Yt, St|I1:t) over the state {Yt, St} with a set
of hybrid particles {Y

(j)
t , w

(j)
t , α

(j)
t (St)}M

j=1, where w
(j)
t is the particle’s impor-

tance weight and each particle has its own conditional distribution α
(j)
t (St) on

shape St:

α
(j)
t (St)

Δ= P (St|Y (j)
t , I1:t)

∝ P (It|Y (j)
t , St)P (St|Y (j)

t )

Fig. 2. Learned parameters for the foreground image models of the parts of a bee. The
left column shows the mean pixel values of each part, while the right column shows the
pixel variance.

The hybrid samples constitute a Monte Carlo approximation to the exact
marginal Bayes filter in formula (3) as follows:

P (Yt|I1:t) ≈ k

∫
St

P (It|Yt, St)P (St|Yt) ×
∑

i

w
(i)
t−1P (Yt|Y (i)

t−1)

Finally, by substituting the conditional distribution α
(j)
t (St) on shape parameters

into the above formula, we obtain the following Monte Carlo approximation to
the marginal filter:

P (Yt|I1:t) ≈ k
∑

i

w
(i)
t−1P (Yt|Y (i)

t−1)
∫

St

α
(i)
t−1(St)

Thus, the Rao-Blackwellized particle filter proceeds through the following
steps:
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Algorithm 1. Rao-Blackwellized Parts-Constellation Filter
1. Select a particle Y

(i)
t−1 from the previous time step according to weights w

(i)
t−1.

2. Sample a new particle Ŷ
(j)

t from the motion model

P (Yt|Y (i)
t−1)

3. Calculate the posterior density α
(j)
t (St) on shape St:

α
(j)
t (St) = P (It|Y (j)

t , St)P (St|Y (j)
t )

4. Compute the importance weight w
(j)
t =

�
St

α
(j)
t (St) (see Section 4.1 below).

4.1 Computing Importance Weights

The importance weight computation involves an integration over shape St, but it
is tractable because α

(j)
t (St) is a Gaussian. The integral of any function q(x) Δ=

k exp
{
− 1

2‖μ − x‖2
Σ

}
proportional to a Gaussian is

∫
x

q(x) = k

∫
x

exp
{

−1
2
‖μ − x‖2

Σ

}
= k

√
|2πΣ|

where ‖μ−x‖2
Σ

Δ= (μ−x)T Σ−1(μ−x) is the squared Mahalanobis distance from
x to μ with covariance matrix Σ. Note that the constant k is equal to q(μ), as

q(μ) = k exp
{

−1
2
‖μ − μ‖2

Σ

}
= k exp

{
−1

2
0
}

= k

Hence, with μ the mode of q(x), we have

∫
x

q(x) = q(μ)
√

|2πΣ| (5)

Observe that if α
(j)
t (St) is a product of all Gaussian terms, then it is itself

Gaussian. Thus, the only constraint on our model is that the shape model,
foreground PFn(.) and background PB(.) models be normally distributed.

We find the mode of α
(j)
t (St), which we denote by S∗

t , by optimization. We
use an inverse-compositional variant of the Lucas-Kanade algorithm [10,1] which
optimizes the shape by registering templates for each part (the means of the
foreground distributions PFn(.)) to the measured image It. See section 6 for an
explanation of the assumptions underlying this approach. Finally, we apply the
above property of Gaussians (5) to compute our importance weight:
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w
(j)
t =

∫
St

α
(j)
t (St)

= α
(j)
t (S∗

t )
√

|2πΣ|
= P (It|Y (j)

t , S∗
t )P (S∗

t |Y (j)
t )

√
|2πΣ|

∝
∏
n

PFn(Fn(Y (j)
t , S∗

t ))

PB(Fn(Y (j)
t , S∗

t ))
P (S∗

t |Y (j)
t )

√
|2πΣ|

5 Learning Model Parameters

For a part-based model with N parts, we must learn the shape parameters
θS = {μS , ΣS}, and appearance parameters θI = {θF1 , . . . , θFN , θB} (see figure
2). Given a set of training images I1:T , we use expectation-maximization (EM)
[4,11], starting from an initial estimate for the parameters θ = {θS , θI}. Here,
we assume pose Y is given and treat shape S as a hidden variable.

E-Step. The goal of the E-step is to calculate the posterior distribution P (S|Y, I, θ)
on shape for each training image given the current estimate of the parameters θ.
Note that this distribution is almost identical to the conditional distribution α(S)
on shape from the RBPF. Thus, in the E-step, we essentially create a set of hybrid
particles each with given pose Yt and distribution αt(St|θ) defined with respect to
the current parameter estimates:

P (S|Y, I, θ) ∝
∏
n

PFn(Fn(Y, S)|θFn)
PB(Fn(Y, S)|θB)

P (S|Y, θS) (6)

M-Step. In the M-step, we maximize the expected log-posterior Q(θ; θold) with
respect to θ to obtain a new set of parameters θnew.

θnew = argmax
θ

Q(θ; θold)

We define S∗
t as the optimal shape for training image It according to equation

6 . This optimal shape is obtained using image registration as explained before
in Section 4.1. We compute the expected log-posterior Q(θ; θold):

= E[log P (I|Y, S, θI) + log P (S|Y, θS)]P (S|Y,I,θold)

=
∑

t

[
∑

n

[log PFn(Fn(Yt, S
∗
t )|θFn) −

log PB(Fn(Yt, S
∗
t )|θB)] + log P (S∗

t |Yt, θS)]

Intuitively, after we find the set of optimal shapes S∗
1:T , finding the θ that max-

imizes Q(θ; θold) is equivalent to calculating the mean and covariance directly
from the shapes and appearances defined by S∗

1:T . Note that the background
parameters θB are not updated during EM.
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Fig. 3. Tracking a dancing honey bee in an active hive is a difficult task, further
complicated by the non-rigid shape of the bee and the complex “waggle” portion of the
dance

6 Experimental Results

We used the parts-based Rao-Blackwellized particle filter to track a dancing
honey bee in an active hive (see figure 3), a difficult task that is of interest
to biologists studying honey bee behavior. There are over 120 bees in frame
throughout the video and they often collide and/or occlude each other. The
“waggle” portion of a bee’s dance involves complex motion that is not easily
modeled, while the “turning” portion of the dance bends a bee’s body in a way
that is difficult to model with only a single template.

We represent the pose of a bee as a vector Y = {x, y, θ} including 2D position
(x, y) and rotation θ. The center of rotation of each target is 20 pixels from the
front of its head. We model a bee as consisting of N = 3 parts of size 30x20 pixels
each. Each part has its own pose {xn, yn, θn} with respect to the pose Y of the
entire bee, such that the shape S of bee composed of N parts is represented
by a 3 × N dimensional vector. Therefore, for our task, the shape model is a
9-dimensional Gaussian on joint shape configuration S, the motion model is a
3-dimensional Gaussian on change in pose Y , and the appearance model puts a
3-dimensional (R,G,B) Gaussian on every pixel of each foreground region F1:N ,
while the background B is modeled with a single 3-dimensional Gaussian on the
average color of a region.
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(a) x vs. y
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(b) From top to bottom: x,y,theta vs. time

Tracker Particles Failures Trans. Err. Rot. Err. Time/Frame

1-Part PF 500 5 2.29 pixels 0.08 rad 2.01 s

3-Part RBPF 80 3 3.02 pixels 0.13 rad 2.03 s

(c) Tracker performance with a more expensive per-pixel background model

Fig. 4. A parts-based RBPF with 80 particles recorded 3 failures over the course of
a bee dance (c). We plot the tracker’s performance against ground truth (a) in a 2D
view and (b) in a time series view. The ground truth trajectory is plotted in blue, the
trajectory returned by the tracker is plotted in red, and failures are indicated with
black dots and tick marks in (a) and (b) respectively. Observe that all of the remaining
failures occur during the “waggle” portion of the bee dance.
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Table 1. The parts-based RBPF using only 80 particles fails less than half as many
times as two other trackers that do not model shape, including a template-registration
method and a single-template particle filter that uses 540 particles

Tracking Method Particles Failures Mean Trans. Error Mean Rot. Error Mean Time/Frame

Lucas-Kanade - 49 4.87 pixels 0.42 rad 0.25 s

1-Part PF 540 50 2.63 pixels 0.12 rad 0.89 s

3-Part RBPF 80 24 5.97 pixels 0.27 rad 0.85 s

Table 2. Incorporating a parts-constellation model into a traditional particle filter
without Rao-Blackwellization requires many more samples and still does not achieve
the performance level of the RBPF

Particles Failures Mean Translation Error Mean Rotation Error Mean Time/Frame
100 53 4.63 pixels 0.26 rad 0.97 s
200 45 4.27 pixels 0.20 rad 1.60 s
400 50 4.01 pixels 0.19 rad 2.98 s
800 39 3.68 pixels 0.18 rad 5.64 s
1600 51 3.42 pixels 0.13 rad 10.74 s

The parameters of the shape, appearance, and motion models were learned
from a training data set consisting of 807 frames of hand-labeled bee poses. The
shape and appearance models were learned simultaneously by applying EM to
a subset of 50 frames of training data. The motion model was learned from the
incremental translations and rotations between successive frames of the entire
training set.

We tested our tracker on a video sequence (810 frames at 720x480 pixels) for
which we have hand-labeled ground truth data. All tests were run on a 2.8 GHz
Pentium 4 processor. We say a failure occurred when the tracked position differs
from the ground truth position by more than half the bee’s width (15 pixels).
For these experiments, when the tracker fails, it is reinitialized at the ground
truth position for the current frame and resumes tracking.

First, we compared our parts-based RBPF tracker against two other track-
ing methods (see Table 1). The first tracker (which avoids particles completely)
uses an iterative image-alignment method based on Lucas-Kanade. A single bee
template is aligned to the image in each frame, starting from the aligned lo-
cation of the previous frame. The second tracker is a traditional particle filter
with a single-template appearance model in which no optimization occurs. This
particle filter samples over pose, but shape is not modeled at all. Using a parts-
constellation model decreased the number of tracking failures by a factor of 2,
from 50 to 24.

For comparison, we show the performance in Table 2 of a parts-based model
which does not treat shape analytically and instead samples over both shape and
pose. Even after repeatedly doubling the number of particles to 1600, the tracking
performance does not improve much beyond the results of the non-shape-based
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particle filter in Table 1. Because joint samples on shape and pose live in a 12-
dimensional space, an extremely large number of particles (and processing time)
would be needed to match the performance of our 80-particle RBPF tracker.
Only with Rao-Blackwellization do parts-constellation models become efficient
enough to be of use in a particle filter.

In further experiments, we recorded only 3 failures for an 80-particle RBPF
using a more computationally expensive per-pixel background model (see Figure
4), while a 500-particle single-part PF using this model fails roughly twice as
often. The remaining failures occurred during the “waggle” portion of the dance,
suggesting that a more sophisticated motion model is necessary to further reduce
the number of tracker failures.

Note that in theory, we should jointly align all parts of the model simultane-
ously with respect to both the joint shape distribution and the individual part
appearance models. In our implementation, we initialize the shape at the mean
of the joint shape distribution, but we are optimizing the appearance of each part
individually. Because the appearance model often dominates the shape model,
this is a reasonable approximation which is supported by the experiments.

7 Conclusion

The parts-based RBPF tracker presented here reduced tracker failures by a factor
of 2. We used somewhat naive appearance and motion models, in part, so that we
could isolate and observe more clearly the specific advantages of a parts-based
model for difficult tracking tasks. Only with the addition of more sophisticated
appearance models (e.g. subspace models) and motion models (e.g. switching
linear dynamic systems) would we expect the tracker to perform perfectly. What
we have demonstrated is that

– parts-constellation models can be beneficial for some tracking tasks, and that
– Rao-Blackwellization enables the efficient use of parts-based models for par-

ticle filtering.
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Abstract. A number of Bayesian tracking models involve auxiliary dis-
crete variables beside the main hidden state of interest. These discrete
variables usually follow a Markovian process and interact with the hid-
den state either via its evolution model or via the observation process,
or both. We consider here a general model that encompasses all these
situations, and show how Bayesian filtering can be rigorously conducted
with it. The resulting approach facilitates easy re-use of existing tracking
algorithms designed in the absence of the auxiliary process. In particu-
lar we show how particle filters can be obtained based on sampling only
in the original state space instead of sampling in the augmented space,
as it is usually done. We finally demonstrate how this framework facili-
tates solutions to the critical problem of appearance and disappearance
of targets, either upon scene entering and exiting, or due to temporary
occlusions. This is illustrated in the context of color-based tracking with
particle filters.

1 Introduction and Motivation

Visual tracking involves the detection and recursive localization of objects within
video frames. Often, the state of interest, e.g., size and location of the object, is
associated with auxiliary discrete variables. Such variables show up for instance
within the state evolution model, e.g., when different types of dynamics can
occur [3]. More often, such auxiliary variables are introduced in the observation
model. It is the case for appearance models based on a set of key views [8,10]
or silhouettes [8,1]. Auxiliary variables are also used to handle partial or total
occlusions [6] or mutual occlusions when jointly tracking multiple objects [5,10].
Finally, auxiliary variables can be used to assess the presence of tracked objects in
the scene [9,4]. When a Bayesian tracking approach is used with such augmented
models, either specific filters are derived based on the detailed form of the model
at hand or the optimal filter of the joint model is simply used. In the latter case,
a practical implementation might be unnecessarily costly due to the increased
dimension of the joint space. Sequential Monte Carlo approximations (SMC) in
the joint space are for instance used in [3,4,8,9,10].
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The first contribution of this paper is to propose a general and unified frame-
work to easily derive the optimal Bayesian filter for the augmented model based
on the one for a model with no (or frozen) auxiliary variables. In practice, this
allows the re-use of existing tracking architectures, with a reasonable computa-
tional overhead in case the discrete auxiliary variable only takes a small number
of values. This approach allows us in particular to introduce a generic SMC ar-
chitecture that relies on sampling in the main state space only. This is exposed
in Section 2.

The problem of appearing and disappearing objects, whether it is upon enter-
ing and exiting the scene, or upon getting occluded by another object, is critical
in visual tracking. As we mentioned above, the different forms of this problem
have already been addressed in the past based on auxiliary hidden processes.
The second contribution of this paper is to re-visit these problems using our
generic framework. The resulting filters are implemented using the our generic
SMC architecture. To handle occlusions, we introduce in Section 3 a binary vis-
ibility process that intervenes in the observation model. In this case, our generic
approach allows us to derive a two-fold mixture filter that deal with temporary
occlusions. In a similar fashion, we address the problem of “birth” and “death”
of objects, which is crucial for multiple-object tracking, by introducing a binary
existence process. This process impacts both the state evolution and the data
model. The application of our approach leads in this case to a simple filter whose
SMC approximation does not need to draw samples for the existence variable.

2 Tracking with an Auxiliary Process

2.1 Modeling Assumptions

For visual tracking, we are interested in recursively estimating the object state
xt ∈ R

nx , which specifies the position of the object in the image plane and,
possibly, other parameters such as its size and orientation, based on a sequence
of observations yt .= (y1 · · ·yt). We assume in addition that a discrete auxiliary
variable at also has to be recursively inferred. This variable takes its values in a
set of cardinality M that we will denote by {0 · · ·M − 1} for convenience.

The complete set of unknowns at time t is thus {xt, at}, for which we assume
the following Markovian prior

p(xt, at|xt−1, at−1)= p(xt|xt−1, at, at−1)p(at|at−1). (1)

In other words, the state follows a Markov chain with its kernel parameterized
by the current and previous values of the auxiliary variable, and the auxiliary
process is a discrete Markov chain. Let A = (αji) be its M×M transition matrix,
with αji

.= p(at = i|at−1 = j). For brevity, we will also use the notation

pji(xt|xt−1)
.= p(xt|xt−1, at = i, at−1 = j). (2)

As for the observation model, we assume in the normal way that the image
data at successive instances are independent conditional on the hidden variables,
i.e., p(yt|xt, at,yt−1) = p(yt|xt, at). For notational convenience we will denote
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pi(yt|xt)
.= p(yt|xt, at = i). (3)

The graphical model of the resulting joint distribution p(x0:t, a0:t,y1:t) is given
in Fig. 1.

xtx0

yt

a0 at
· · ·

Fig. 1. Graphical model of the joint distribution p(x0:t, a0:t,y1:t) over the state,
auxiliary and measurement processes

2.2 Bayesian Filter

For tracking, we are interested in recursively estimating the joint filtering distri-
bution

p(xt, at|yt) = p(xt|at,yt)p(at|yt), (4)

from which the marginal filtering distribution can be deduced as

p(xt|yt) =
∑

i

p(xt, at = i|yt) =
∑

i

pi(xt|yt)ξi,t, (5)

where we used the notation

pi(xt|yt) .= p(xt|at = i,yt) (6)
ξi,t

.= p(at = i|yt). (7)

Similar to our previous notation, we will now use the distribution subscript i to
indicate conditioning with respect to the current auxiliary variable set to i, and
the distribution subscript ji for conditioning on i and j being the current and
previous values of the auxiliary variable.

We will first show how to compute the M conditional state posteriors pi(xt|yt).
First note that

pi(xt|yt) =
pi(xt,yt|yt−1)

pi(yt|yt−1)
. (8)

The numerator can be expressed as

pi(xt,yt|yt−1) =
∑

j

pji(xt,yt|yt−1)p(at−1 = j|at = i,yt−1), (9)

with
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pji(xt,yt|yt−1) = pi(yt|xt)pji(xt|yt−1)

= pi(yt|xt)
∫

pji(xt|xt−1)pj(xt−1|yt−1)dxt−1, (10)

and

p(at−1 = j|at = i,yt−1) .= α̃ji,t

∝ p(at = i|at−1 = j,yt−1)p(at−1 = j|yt−1). (11)

Based on the conditional independence structure of the model, one can show that
the first term on the right hand side is independent of yt−1. We thus obtain,
after normalization,

α̃ji,t =
αjiξj,t−1∑
k αkiξk,t−1

. (12)

The predictive likelihood in the denominator of (8) is

pi(yt|yt−1) =
∑

j

α̃ji,t

∫
pji(xt,yt|yt−1)dxt. (13)

The filtering distribution in (5) is then a mixture of the M conditional filtering
distributions, i.e.,

pi(xt|yt) =

∑
j α̃ji,tpji(xt,yt|yt−1)

pi(yt|yt−1)
, (14)

each of which is obtained by combining M optimal Bayesian filters to compute
(10) and (13).

We still need the marginal posterior of the auxiliary variable, p(at|yt), to
compute the weights ξi,t in the mixture of (5). We have

ξi,t ∝ pi(yt|yt−1)
∑

j

p(at = i|at−1 = j,yt−1)ξj,t−1. (15)

Since the first factor in the sum is independent of yt−1, we finally obtain, after
normalization

ξi,t =
pi(yt|yt−1)

∑
j αjiξj,t−1∑

k pk(yt|yt−1)
∑

j αjkξj,t−1
. (16)

We present below an algorithmic summary of the operations at time t of the
generic algorithm.

• Input: pi(xt−1|yt−1) and (ξi,t−1) for i = 0 · · ·M − 1.
1. Compute α̃ji,t as in (12), for i = 0 · · ·M − 1.
2. Compute the M2 distributions pji(xt,yt|yt−1) as in (10), for i, j = 0 · · ·M −

1.
3. Compute the M measurement prediction distributions pi(yt|yt−1) as in (13),

for i = 0 · · ·M − 1.
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4. Compute the M updated filtering distributions pi(xt|yt) = as in (14), for
i = 0 · · ·M − 1.

5. Compute the marginal posterior probability vector (ξi,t)i=0···M−1 of the aux-
iliary variable as in (16).

• Output: distributions pi(xt|yt) and weights ξi,t.

At each time step, M2 “elementary” filtering operations are required (step
2), one per possible occurrence of the pairing (at, at−1). In practice, not all
M2 values may be admissible, in which case the number of elementary filtering
operations at each time step is reduced accordingly. As we will see, specificities of
the model under consideration might also permit further computational savings.

The framework above is entirely general, both in terms of model ingredients
(evolution and observation processes) and in terms of implementation. Regard-
ing the latter, all existing techniques, whether exact or approximate, can be
accommodated. If, for example, the filtering distributions pi(xt|yt) are to be
represented by Gaussian mixtures, the mixtures components can be obtained by
the Kalman filter for linear Gaussian models, and by the extended or unscented
Kalman filters for non-linear and/or non-Gaussian models. For models of the lat-
ter kind it may sometimes be beneficial to adopt a particle representation, and
use sequential importance sampling techniques to update the filtering distribu-
tion. This is especially true for the highly non-linear and multi-modal models
used in visual tracking, hence the success of SMC techniques in the computer
vision community. It is this type of implementation that we now consider.

2.3 SMC Implementation

For a general SMC implementation, we will consider proposal distributions of
the form qji(xt|xt−1,yt)

.= q(xt|xt−1, at = i, at−1 = j,yt). Based on these pro-
posals, different SMC architectures can be designed to approximate the generic
algorithm of the previous section. We propose here an architecture that is based
on systematic resampling. Assuming that each conditional posterior distribution
pi(xt−1|yt−1) at time t − 1 is approximated by a set (s(n)

i,t−1)n=1···N of N equally
weighted particles, we simply replace steps 2, 3 and 4 in the algorithm of Section
2.2 by:

2. For j = 0 · · ·M − 1, for i = 0 · · ·M − 1
2a. Sample N particles s̃(n)

ji,t ∼ qji(xt|s(n)
j,t−1,yt).

2b. Compute the normalized predictive weights

π
(n)
ji,t ∝

pji(s̃
(n)
ji,t|s

(n)
j,t−1)

qji(s̃
(n)
ji,t|s

(n)
j,t−1),yt

with
∑

n

π
(n)
ji,t = 1. (17)

3. Approximate the M predictive data likelihoods by

pi(yt|yt−1) ≈
∑

j

∑
n

w
(n)
ji,t, (18)
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where, for i, j = 0 · · ·M − 1,

w
(n)
ji,t

.= α̃ji,tpi(yt|s̃(n)
ji,t)π

(n)
ji,t. (19)

4. For i = 0 · · ·M−1, draw N particles s(n)
i,t with replacement from the weighted

set (s̃(n)
ji,t, pi(yt|yt−1)−1w

(n)
ji,t)j,n of M × N particles.

Steps 1 and 5 remain unchanged.
At each instant t, posterior expectations can be approximated using the final

particle sets:

E[xt|at = i,yt] ≈ x̂i,t
.=

1
N

∑
n

s(n)
i,t (20)

E[xt|yt] ≈ x̂t
.=

∑
i

ξi,tx̂i,t. (21)

If the proposal distribution does not depend on at = i, then step 2a can be
performed M times instead of M2 times, providing particles sets (s̃(n)

j,t )n to be

used in place of (s̃(n)
ji,t)n in the remainder of the algorithm.

Note that, contrary to standard SMC handling of models with auxiliary
variables (e.g., [3,4,8,9,10]), the proposed implementation restricts sampling to
the original state space of interest, thus avoiding the sampling of the auxiliary
variable.

3 Appearance and Disappearance

Most tracking algorithms assume he number of objects of interest to be constant
in the sequence. However, in most cases objects of interest enter and exit the
scene at arbitrary times. In addition, they can also disappear temporarily behind
other occluding objects. In the latter case of occlusion, tracking should be con-
tinued blindly in the hope of locking back onto the objects when they re-appear.
An object entering or exiting the scene should in contrast result in initiating or
terminating tracking, respectively. In any case, these appearance and disappear-
ance events, whether they are temporary or definitive, are themselves uncertain
events. The associated concepts of “existence” and “visibility” should thus be
treated jointly with the other unknowns within a probabilistic framework that
can account for all the expected ambiguities. Exploiting the generic approach
presented in the previous section, we propose to achieve this using two auxiliary
binary processes. Although these two processes can be used jointly, we introduce
them separately for the sake of clarity.

3.1 Visibility Process

Explicit introduction of an occlusion process within the Bayesian tracking frame-
work was proposed in [5] and [10]. Both works, however, rely on specific modeling
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Fig. 2. Tracking under severe occlusions. The color-based tracker is initialized on
the top of the walking person. The succession of occlusions caused by foreground trees
is successfully handled thanks to the explicit modeling of visibility changes. The box
corresponds to the MC approximation of the posterior state expectation. Its color is
changed from yellow to red when the posterior visibility probability drops below 0.5.

assumption (contour-based tracking in the former, luminance exemplars in the
latter), and specific implementations (particle filter with partitioned importance
sampling in the former vanilla bootstrap particle filter in the latter). In con-
trast, our approach relies on generic modeling assumptions and is independent
of a specific implementation strategy, so that existing tracking architectures can
be re-used. The occlusion modeling we propose can thus be used in conjunction
with any Bayesian visual tracking technique, based for instance on the Kalman
filter or one of its variants. In addition, using it within the SMC architecture of
Section 2.3 allows restriction of the sampling to the object state space only.

Considering here only the case of complete occlusion, we introduce a binary
visibility variable vt that indicates whether the object is visible (vt = 1) or not
(vt = 0) in the image at time t. The Markov chain prior on this binary variable
is completely defined by the occlusion and desocclusion probabilities, α10 and
α01. The state evolution model is independent of the visibility variable, i.e.,

pji(xt|xt−1) = p(xt|xt−1). (22)
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Fig. 3. Posterior visibility probability, ξ1,t = p(vt = 1|yt), plotted against time
for the example in Fig. 2. Selected key views show some occlusion and desocclusion
events that respectively cause the visibility probability to drop, possibly to 0, and to
increase back to 1.

Two data models,

p(yt|xt, vt = 0) = p0(yt) (23)
p(yt|xt, vt = 1) = p1(yt|xt), (24)

will have to be specified, depending on whether the object of interest is visible
in the image or not. In the former case, the likelihood is independent of the state
value. Since our experiments are conducted in the context of color-based track-
ing we consider a simple observation model related to the more complex ones
proposed in [9,4]. Pixel-wise location independent background and foreground
models, g0 and g1, respectively, are specified over the selected color space. As-
suming conditional independence of color measures over a sub-grid S of pixels,
we obtain

p0(yt) =
∏
s∈S

g0(ys,t) (25)

p1(yt|xt) =
∏

s∈R(xt)

g1(ys,t)
∏

s∈R̄(xt)

g0(ys,t), (26)

where R(xt) is the image region associated with an object parameterized by the
state xt, and ys,t is the color at pixel s in frame t.

For this dynamic model, the SMC architecture of Section 2.3 can be simplified.
Indeed, the independence of the state evolution with respect to the auxiliary
variables allows step 2a to be performed only M times, and suggests the use of
a unique proposal. A simple and classical choice is to take the state dynamics
(22) as the proposal [2]. We will adopt this approach here, while bearing in mind
that any data-based proposal, including the optimal one in the rare cases that
it is accessible, can be used in our generic framework. In case an object detector
compliant with the tracking of interest is available, the proposal can also be
chosen as a mixture combining the state dynamics and Gaussian distributions
centered on detections (if any), as suggested in [7].
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Fig. 2 shows results obtained on a sequence where a walking person is success-
fully tracked despite a succession of severe and total occlusions caused by trees
in the foreground. The manual initialization ot the traker provides the reference
foreground and background models defined as 5 × 5 × 5 joint histograms in the
RGB color space. The unknown state xt comprises the position in the image
plane (nx = 2) and its dynamics (22) is taken to be a random walk with inde-
pendent Gaussian noise with variance 102 on each component. The parameters
of the Markov chain on the visibility process are α01 = 0.8 and α10 = 0.1, and
its initial distribution is given by p(v0 = 1) = 0.8. We use N = 200 particles
for the SMC implementation. The main quantities of interest are the marginal
filtering distributions (5), which inform on the localization of the object of in-
terest regardless of whether it is visible or not. The algorithm also recursively
estimates the marginal visibility posterior p(vt = 1|yt). The time evolution of
this quantity for the pedestrian sequence is plotted in Fig. 3. It correctly drops
to zero for each complete occlusion of the tracked person. Note also that the
ambiguity caused by less severe partial occlusions also results in small decreases
in this quantity. Thus, besides its crucial role in the derivation of the recursive
Bayesian filter for the augmented model, the estimation of the posterior visibility
carries information that is interesting in its own right. Assessing the degree of
occlusion of tracked objects is for instance a difficult and crucial problem when
it comes to online updating of reference appearance models [6].

3.2 Existence Process

Using a Markovian binary variable to indicate presence in the scene is proposed
in [9] to determine in a probabilistic fashion the beginning and end of the track
for a single object. We adopt the same model here. However, sequential Monte
Carlo is the only inference mechanism considered in [9], and it is conducted in
the augmented state space. By comparison, our generic framework can be easily
used with any Bayesian filtering technique and its SMC version implies sampling
only in the object state space.

Following [9], we introduce a binary existence variable et that indicates
whether the object of interest is present (et = 1) or not (et = 0) in the scene
at time t. The Markov chain prior on this binary variable is completely defined
by the death and birth probabilities, α10 and α01. Conditional on the existence
variables the state dynamics is specified by

p00(xt|xt−1) = p10(xt|xt−1) = δu(xt) (27)
p01(xt|xt−1) = pinit(xt) (28)
p11(xt|xt−1) = pdyn(xt|xt−1), (29)

where u is the consuming state that corresponds to the object not existing, pinit
is the initial state distribution, and pdyn is the object dynamic model. From
the data model point of view, the existence process is similar to the visibility
process.
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Fig. 4. Single object detection and tracking. The color model is initialized be-
forehand on one instance of a red car. The algorithm then successfully detects red cars
that enter the scene, locks onto them and tracks them as long as they remain in view,
and finally determines automatically when they disappear. In each of the displayed
frames, the box amounts to the MC approximation of the posterior state expectation,
conditional on existence et = 1.

Due to the component (27) of the evolution model, non-existence et = 0
deterministically forces xt into fictitious state u. This is carried over in the
posterior model, yielding

p0(xt|yt) = δu(xt). (30)

As a consequence, the algorithm only needs to recursively estimate the condi-
tional filtering distribution for the case of the object existing, i.e., p1(xt|yt).
Thus, within the SMC framework, only two proposal distributions, q01 and q11,
are required, instead of four. As in the previous section, we only consider the
simple case where these distributions coincide with their counterparts in the
evolution model.

10 20 30 40 50 60
0

0.5

1

Fig. 5. Posterior existence probability, ξ1,t = p(et = 1|yt), plotted against time
for the example in Fig. 4. When the object enters the scene, ξ1,t quickly ramps up to
1, and falls back down to 0 when it exits.

In the following experiment, the observation model is defined as in the previ-
ous section. Yet again the state comprises the object location in the image plane,
and in the state evolution model (28)-(29), pinit and pdyn are respectively cho-
sen as the uniform distribution over positions in the image plane and a random
walk with independent Gaussian noise. The variance of the noise is 152 for each
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Fig. 6. Detection and tracking of multiple objects using multiple interacting
trackers with existence process. Based on the same reference color model initialized
beforehand on one blue player, six color-based trackers with existence process are run
in parallel. They share at each instant the same proposal distribution q01 which excludes
regions already populated by “active” trackers (i.e, those with ξ1,t > 0.2). This simple
system allows the proper detection and tracking of the blue players as long as they
remain in view. The MC approximation of the posterior state expectation is displayed
only for trackers that are “active” (i.e, those with ξ1,t > 0.2), using one color per
tracker.
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component for the car race sequence in Fig. 4. Also, the state distribution at
time t = 0 coincides with pinit. Hence, contrary to the previous experiment, the
tracker is not initialized manually at the beginning of the sequence (the refer-
ence foreground model is picked on an arbitrary red car in a different part of the
video). For this experiment, the death and birth probabilities are respectively
set to α01 = 0.1 and α10 = 0.1, and the initial existence distribution is given
by p(e0 = 1) = 0.1. Finally, N = 50 particles were sufficient to detect the en-
trance and exit of red cars in the field of view and to track them while present
in the scene. Entrance and exit events are clearly identified by the variations in
the posterior existence probability ξ1,t, as shown in Fig. 5. In this example, a
single tracker successively locks on to different cars, each one appearing in the
image after the previous one has been successfully detected and tracked until
disappearance. In practice, distinction between different tracked objects would
be necessary, especially if they are likely to be present simultaneously in the
image. In this context, the information carried by the existence probabilities fa-
cilitates the design of a mechanism that effectively initiates different trackers for
each “detected” object and subsequently discards each tracker whose associated
existence probability ξ1,t falls below a threshold.

An example of such a multiple object tracking is presented in Fig. 6, where
football players from the same team are tracked in a video sequence. Due to
player and camera movement the number of players in view varies continuously
between 0 and 6. Six trackers with existence process are run in parallel. Each of
them locks on a different player as he enters the image and tracks him until he
exits the field of view, at which point the tracker is disabled. In order to avoid
that an “inactive” tracker becomes “active” by locking on an already tracked
player, the proposal distribution q01 is shared by all the trackers and reshaped
at each instant. It is simply uniform over the part of the state space that is
not yet occupied by any of the active trackers. Note, however, that we have
not introduced any mechanism to handle mutual occlusions in this preliminary
experiment.

4 Conclusions and Perspectives

In this paper we introduced a generic Bayesian filtering tool to perform tracking
in the presence of a certain class of discrete auxiliary processes. The approach
places no restriction on the ingredients of the evolution and observation models
and on the selected type of filter (Kalman filter and its variants, particle filters).
Hence the proposed framework allows re-use of existing architectures on a vari-
ety of tracking problems where the introduction of auxiliary discrete variables
is useful. We demonstrated in particular how the technique can be applied in
visual tracking to handle occlusions and object appearance/disappearance via
visibility and existence binary processes. Experimental validation is presented in
the particular case of color-based tracking with particle filters.

Our generic framework would now allow the combination of these two binary
processes within a single tracking setup. This would amount to the manipulation
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of a joint auxiliary variable (vt, et) with three possible states, (0, 0), (0, 1) and
(1, 1). This would be especially useful to address the difficult problem of multiple
object tracking where an unknown and varying number of objects of interest must
be detected and tracked in presence of occlusions. In this case, however, mutual
occlusions between the tracked objects might require a treatment different from
the one of occlusions by other parts of the scene.

Other lines of future research concern the application of our generic framework
to other types of tracking with auxiliary discrete processes, such as those with
switches between different dynamics or different appearance models.
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Abstract. A novel hybrid region-based and contour-based multiple ob-
ject tracking model using optical flow based elastic matching is proposed.
The proposed elastic matching model is general in two significant ways.
First, it is suitable for tracking of both, rigid and deformable objects. Sec-
ond, it is suitable for tracking using both, fixed cameras and moving cam-
eras since the model does not rely on background subtraction. The elastic
matching algorithm exploits both, the spectral features and contour-based
features of the tracked objects, making it more robust and general in the
context of object tracking. The proposed elastic matching algorithm uses
a multiscale optical flow technique to compute the velocity field. This pre-
vents the multiscale elastic matching algorithm from being trapped in a
local optimum unlike conventional elastic matching algorithms that use
a heuristic search procedure in the matching process. The proposed elas-
tic matching based tracking framework is combined with Kalman filter
in our current experiments. The multiscale elastic matching algorithm is
used to compute the velocity field which is then approximated using B-
spline surfaces. The control points of the B-spline surfaces are used di-
rectly as the tracking variables in a Kalman filtering model. The B-spline
approximation of the velocity field is used to update the spectral features
of the tracked objects in the Kalman filter model. The dynamic nature of
these spectral features are subsequently used to reason about occlusion.
Experimental results on tracking of multiple objects in real-time video are
presented.

1 Introduction and Background

Multiple object tracking in dynamic scenes is challenging in several aspects. The
first challenge arises from occlusions, which includes mutual occlusion between
foreground objects and occlusion caused by background objects. When occlusion
occurs, some objects are partially or totally invisible. This makes it difficult to
accurately localize the occluded object and track it continuously over several
image frames. The second challenge is the formulation of an object model that
is capable of handling object deformation. The object model should be able
to capture the most important and relevant information about the object and
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facilitate fast and reliable tracking. The ability to deal with occlusion depends, to
a great extent, on the object model. The third challenge is to meet the real time
constraints of most tracking applications in the real world. Fast and accurate
object localization over time is the ultimate objective of a tracking system.

Generally speaking, there exist three broad categories of object models in
the context of tracking: contour-based models [1], [5], [7], [8], [23], region-based
models [2], [3], [4], and feature point-based models [9], [10], [22]. The contour-
based model does not encode any color or edge information within the interior
of the object. The contour information by itself is not enough to handle gen-
eral instances of occlusion. In the absence of any spectral information, feature
point-based tracking methods are easily distracted by noisy feature points in
the background and are, by their very nature, limited to objects rich in feature
points. A region-based object model is more suitable when occlusion is present
since it encodes spectral information.

Occlusion handling is another important issue that arises in multiple object
tracking systems and is closely intertwined with the choice of the object model.
In the case of contour-based models, the robustness of the occlusion reasoning
is highly dependent on the quality of object segmentation and typically, only
simple cases are well handled. Koller et al. [7] propose a depth-based occlusion
reasoning scheme based on a geometric model which computes the projection of
the moving object in the 3-D world onto the image plane. However, their method
is only applicable in situations where the object moves in the vertical direction
in the image plane and hence not valid for more general tracking scenarios. Also,
region-based object models that rely primarily on color/gray level histograms of
the moving regions are not well suited to handle occlusion since no object shape
information is available. McKenna et al. [3] use simple correspondence analysis
to do tracking when the tracked objects are independent of each other. In the
event of occlusion, their technique can only compute a statistical probability
that a pixel of a given color belongs to a specific object which is not useful for
the purpose of accurate object localization.

Elastic matching has been used widely for deformable object recognition [6]
and tracking [15]. Elastic matching is potentially well suited for tracking of de-
formable objects. Since elastic matching exploits both, the spectral information
within and the spatial coherence constraint amongst the object pixels, it can be
easily integrated with a region-based object model. Another advantage of elas-
tic matching is that the tracking results are not dependent on the accuracy of
the background subtraction used to extract the moving objects. This makes it
possible to track moving objects with a moving camera. However, most existing
elastic matching methods use a heuristic search algorithm within the matching
procedure [6,15,16,17] and are hence prone to get trapped in a local optimum.
Optical flow methods exploit the image gradient information to compute the
velocity field, making it possible to avoid a local optimum within the elastic
matching procedure. However, most optical flow methods use only gray scale
images and the velocities at each image pixel are computed independently, thus
resulting in a noisy velocity field. In a homogeneous image region, the image
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gradient value is a constant (close to zero) resulting in ambiguous values for the
velocity field. Also, most optical flow algorithms ensure only local consistency of
the velocity field since the image gradient is computed within a local window.

Very few optical flow algorithms using multiple-channel (multi-spectral) im-
ages have been reported in the research literature. Markandey et al. [19] and
Golland et al. [18] have proposed optical flow algorithms that use images with 2
and 3 channels respectively. In this paper, the optical flow algorithm is general-
ized to use images with an arbitrary number of channels. The generalized optical
flow computation procedure is used within a hybrid region- and contour-based
elastic matching scheme. Since the spatial coherence constraint is imposed in the
elastic matching procedure, the ambiguities in the computation of the velocity
field in a locally homogenous region of the image is resolved. In order to increase
the range of consistency of the optical flow algorithm, two schemes are adopted.
The first scheme employs an iterative multiscale Lucas-Kanade algorithm for
optical flow computation using a pyramidal image structure. The second scheme
uses a Kalman filtering algorithm to predict the velocity field which is subse-
quently refined by performing a search in the neighborhood of the predicted
location. The incorporation of multiscale elastic matching within the Kalman
filtering framework has two advantages: (a) the inherent limitation of the linear
Kalman filter which assumes that the tracking variables have Gaussian distrib-
utions is addresed, and (b) changes in object size in the image (scale changes)
are effectively dealt with.

The overall system is depicted in Figure 1. Given an initial object position and
its velocity field, the Kalman filtering algorithm predicts the new velocity field
for the next stage. An iterative elastic matching algorithm uses the predicted
initial velocity and the computed optical flow to determine the new velocity field
for the object. The iterative elastic matching algorithm first maps the predicted
velocity field to a manually chosen level l in the pyramid, and determines the
actual velocity at level l using elastic matching. Then the velocity computed at
level l is mapped to level l − 1 and used as the initial velocity at level l − 1.
This procedure is performed iteratively until the velocity at level 0 is obtained.
An occlusion reasoning and local tuning procedure is performed at each level
to generate and verify the occlusion hypothesis at each pixel location and refine
the velocity field. The new velocity field is then used to update the contour
template and object model. The new velocity field is approximated using B-
spline surfaces, which are then used to update the status of the Kalman filter.
The updated Kalman filter is used to predict the velocity field for the new stage.

2 The Multiscale and Multiresolution Object Model

In order to compute a multiscale representation of the moving objects, each of the
original images is encoded as L levels of Gaussian pyramid and Laplacian pyra-
mid. The image at level l in the Gaussian pyramid is denoted by I l. The Gaussian
pyramid image at level l + 1 is computed as I l+1(x, y) = G(x, y; σ) ◦ I l(2x, 2y),
where G(x, y; σ) is the Gaussian smoothing operator, ◦ is the convolution
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Fig. 1. The tracking scheme

operator and σ is the scale parameter (σ = 1 is used in our case). This procedure,
termed as the REDUCE function [21], smoothly samples the original image with
a sampling interval of length 2 along the x axis and y axis. Its inverse function,
defined as Î l(x, y) = G(x, y; σ) ◦ I l+1(x/2, y/2), samples the image at level l + 1
back to l. The Laplacian pyramid image at level l is given by P l = I l − Î l. The
pyramid image at the first level (l = 0) has the same size as the original image.
If the size of the original image is (W, H), where W is the image width and H
the image height, the image size at level l in the pyramid is (W/2l, H/2l). An
RGB color image is encoded as a six-channel image at each level, where three of
the images (R,G and B) are obtained from the Gaussian pyramid and the other
three images (R,G and B) are obtained from the Laplacian pyramid.

Object Ol(i) at level l is represented by a network of points Ol(i) = ({X l
j},

K l, Ll, {T l
j}), where 1 ≤ j ≤ N l and N l is the number of points used to represent

the object. K l is the connectivity matrix with dimension N l × N l such that
kl

ij = 1 if points X l
i and X l

j are connected, and kl
ij = 0 otherwise. In practice,

kl
ij = 1 if point X l

i is one of the neighboring points of point X l
j . The matrix K l is

symmetric and kl
ii

�
= 0. Ll is the connectivity matrix for the boundary points. If

X l
i and X l

j are contour points and are connected to each other within a window
of predetermined size, then llij = 1, else llij = 0. The matrix Ll is also symmetric.
{T l

j} is the object contour template at level l. Each contour point in {X l
j} has

one and only one corresponding point in contour template {T l
j}, and T l

j is not
valid if X l

j is not a contour point. In our current work, the boundary template
model is obtained using B-spline contour fitting as described in Section 3.

For each point X l
j , cl

j = c(X l
j) represents the feature vector associated with

point X l
j and (Σ2

j )l = Σ2(X l
j) represents the covariance matrix of the feature

vector at point X l
j . Since cl

j is a vector comprising of the values from each of the
six channels and it is 6-dimensional. Both cl

j and (Σ2
j )l are temporally varying

values and are updated online. When there is insufficient temporal information for
a point, (Σ2

j )l is initialized to a default value (Σ2
0)l. An online updating scheme for

cl
j and (Σ2

j )l is given in Section 4.4. V l = {vl
j} is the velocity field associated with

the object where vl
j = (vx(X l

j), vy(X l
j)) is the velocity at point X l

j .
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Instead of computing the velocity for each point of the object, the designed
object model dynamically adjusts the sampling intervals of the points used for
velocity computation in order to balance the computational load. Given N0, the
desired number of points used for computation, and N , the total number of
points belonging to the object, the sampling interval used to obtain the points
for velocity computation is determined as max(

√
N/N0, 1). Simple interpolation

is used to determine the velocity for the points which are not sampled. The
contour template T l

j is used to guide the search process.

3 Contour Template

The contour template is pre-trained for the purpose of object tracking. Note
that the object contour is implicitly included in the object model. Given the
contour training set {Ci}, each contour Ci is first normalized to a specified size
(eg. 100 × 100 for face tracking) as shown in Figure 2(a)(1). The contours in
the training set are obtained manually from the training videos. The spatial
distribution of contour points is equalized using interpolation such that the re-
sulting contour points are uniformly distributed along the contour. The starting
point on the contour is chosen to be aligned with centroid point of the contour,
as shown in Figure 2(a)(2) where O is the centroid point and S is the chosen
staring point. Let C′

i = (ci,0, ..., ci,N−1) be the contour obtained from Ci after
normalization, equalization and alignment. A vector of B-spline control points
{Ti} = (ti,0, ..., ti,M−1) is obtained for each contour C′

i in the training set as
shown in Figure 2(a)(3) where the point marked in red represents the first con-
trol point. M = 10 is used in the face tracking experiment. Figure 2(a)(4) depicts
the contour restored using the B-spline control points. The control point vectors
{Ti} are modeled as a mixture of K Gaussian distributions for a predetermined
value of K. The corresponding K clusters of control points are determined using
the K-means algorithm. The distance between the control point vectors Ti and
Tj is measured using the Euclidean metric d(Ti,Tj) = ‖Ti −Tj‖. As shown in
Figure 2(b), 352 faces are randomly extracted from the video data for training in
the face tracking experiment. The control points obtained from the normalized
faces are shown in Figure 2(b)(1). With the K-means algorithm, 3 clusters are
obtained from the 352 control point vectors. The 3 contours generated from the
3 cluster centers of the control point vectors are shown in Figure 2(b) (2) (3)
and (4) where the number within each contour represents the cluster cardinality.
Each cluster is represented as a Gaussian distribution N (Tk, Σk).

Given an object contour C obtained via elastic matching, its contour template
is determined using the following procedure. The contour C is first normalized,
equalized and aligned, and its B-spline control point vector T is determined using
the training procedure described above. Q control point vectors are randomly
generated from each of the K clusters resulting in a total of KQ control point
vectors. The random generation function uses the Gaussian distribution of each
cluster. Among the KQ control point vectors, the one at minimum distance
to T is chosen as the contour template. The control value for each point in C
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(a) The B-spline contour (b) Contour clustering

Fig. 2. Contour template

is computed and used to compute its corresponding points with the contour
template. These points are scaled back to their original size and used in the
elastic matching algorithm in the next step.

4 Pyramidal Elastic Matching Model

Inspired by the pyramidal implementation of Lucas-Kanade image registration
algorithm [20], a multiple scale elastic matching model is designed for region-
based tracking. However, in the original algorithm [20] only grayscale images
are used, each feature point is tracked independently and image interpolation
is used for velocity computation, which incurs high computation load. In the
proposed scheme, the original algorithm is generalized to use images with any
number of channels. In particular, 6-channel images are used as described in the
object model. The imposition of the spatial coherence constraint suppresses the
random noise in the velocity field computation, and the use of multiple scales
ensures that an optimal velocity field can be obtained. Instead of using image
interpolation, a local tuning algorithm is used to obtain sub-pixel accuracy.

The pyramidal elastic matching algorithm can be generalized as follows. Given
object Ol(t) at time t and level l, its initial velocity field (V0)l, and the new
image I l(x, y; t + 1), the objective of elastic matching algorithm is to refine the
velocity field Vl of the tracked object(s), such that the energy function defined
in equation (1) is minimized.

El =
Nl�
i=1

εl(vl
i) (1)

in which

ε
l(vl

i) = g
l
i

�
Xl

j
∈O(Xl

i
)

[cl
j − I

l(Xl
j + (v0

i )l + v
l
i)]

2

� �� �
feature matching

+ γ

Nl�
j=1

l
l
ij‖(Xl

i + (v0
i )l + v

l
i − T

l
i ) − (Xl

j + (v0
j )l + v

l
j − T

l
j)‖2

� �� �
contour constraints

+ β

Nl�
j=1

k
l
ij ‖(v0

i )l + v
l
i − (v0

j )l − v
l
j‖2

� �� �
velocity constraints

(2)
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where gl
i = g(X l

i) is the occlusion hypothesis for point X l
i of the given object such

that gl
i = 0 if X l

i is occluded, and gl
i = 1 otherwise, and (v0

j )l = (v0
xj

, v0
yj

)l is the
initial velocity at point X l

j . In order to avoid the need for image interpolation,
each value in the initial velocity (V0)l is actually its nearest integer value. O(xl

i)
is the set of pixels in a window centered at point X l

i and vl
j is the incremental

velocity. The first part in equation (2) measures the feature match of each point
of the object with the new image, which requires that the corresponding image
point has a similar feature vector in order to minimize the energy function.
The second part in equation (2) defines the contour constraint, which requires
that the neighboring contour points have similar displacement values from the
contour template in order to minimize the energy function. In cases where the
contour template is not available, T l

j can be simply set to (0, 0) for all j, which
is equivalent to a smoothness constraint imposed on the object contour. The
third part in equation (2) imposes spatial coherence on the velocity field, which
requires the velocity of neighboring pixels to be close to each other in order to
minimize the energy function. The parameter β controls the elasticity of the
object. Equation (1) is minimized when ∂El/∂(Vl)τ = 0, which is equivalent to:

∂El

∂(vl
i
)τ

= −2gl
i

�
Xl

j
∈O(Xl

i
)

[cl
j − Il(Xl

j + (v0
i )l + vl

i)]
∂Il(Xl

j + (v0
i )l + vl

i)

∂(vl
i
)τ

+ 4γ

Nl�
j=1

l
l
ij(Xl

i − X
l
j + T

l
i − T

l
j + (v0

i )l − (v0
j )l + v

l
i − v

l
j)τ

+ 4β

Nl�
j=1

k
l
ij(vl

i − v
l
j + (v0

i )l − (v0
j )l)τ (3)

Note that the above equation is obtained under the assumption that K l and
Ll are symmetric. By using Taylor expansion,

I
l(Xl

j + (v0
i )l + v

l) ≈ I
l(Xl

j + (v0
i )l) + I

l
vj

(vl)τ (4)

in which, I l
vj

= (I l
xj

, I l
yj

) is the gradient vector at location X l
j + (v0

i )l. I l
x =

[I l(x + 1, y) − I l(x − 1, y)]/2 and I l
y = [I l(x, y + 1) − I l(x, y − 1)]/2. Based on

these gradient equations, the Taylor expansion in equation (4) is valid when
|vl

x| ≤ 1 and |vl
y | ≤ 1.

For convenience, let δI l
j = cl

j − I l(X l
j + (v0

i )l). Equation (3) can be rewritten
as:

∂El

∂(vl
i
)τ

= g
l
i

�
Xl

j
∈O(Xl

i
)

(Il
vj

)τ I
l
vj

(vl
i)

τ − g
l
i

�
Xl

j
∈O(Xl

i
)

δI
l
j(Il

vj
)τ

+ 2γ

Nl�
j=1

l
l
ij(Xl

i − X
l
j + T

l
i − T

l
j + ((v0

i )l − (v0
j )l + v

l
i − v

l
j)τ

+ 2β

Nl�
j=1

k
l
ij ((vl

i)
τ − (vl

j)τ + ((v0
i )l)τ − ((v0

j )l)τ ) (5)
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The derivation of equation (5) takes advantage of the fact that ∂I l(Xj +
v0

i + vi)/∂(vl
i)

τ = (I l
vj

)τ and I l
vj

(vl
i)

τ (I l
vj

)τ = (I l
vj

)τI l
vj

(vl
i)

τ . Equation (5) is
equivalent to equation (6) and equation (7) given below:
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By letting all ∂El/∂vl
xi

= 0 and ∂El/∂vl
yi

= 0, a system of linear equations
describing the incremental velocity field Vl can be obtained in the form of
A(Vl)τ = b, which can be solved with the LU decomposition method. The
matrix A is given by:
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1 + γll1)I0 ... −2(βkl

1,N + γkl
1,N )I0

−2(βkl
21 + γkl

21)I0 ... −2(βkl
2,N + γkl

2,N )I0
... ... ...

−2(βkl
N,1 + γkl

N,1)I0 ... (Il
vN

)τ (Il
vN

) + 2(βkl
N + γllN )I0

	




� (8)

where I0 =
(

1 0
0 1

)
, kl

i =
∑

j kij and lli =
∑

j llij . Vector b is given by:

bi = g
l
i

�

Xl
j

∈O(Xl
i
)

δI
l
j (Il

vj
)τ − 2

Nl�
j=1

βk
l
ij(((v0

i )l)τ − ((v0
j )l)τ )

− 2
Nl�
j=1

γl
l
ij(Xl

i − X
l
j + T

l
i − T

l
j + ((v0

i )l − (v0
j )l)τ ) (9)

The velocity field Vl
0 is initialized under one of the following situations: when

the object tracking procedure is initialized, the velocity field is assumed to be all
0. The pyramidal elastic matching algorithm starts at a given level (eg. l = 2)
in the pyramid to compute the velocity field. When the velocity level at level l
is known, it can be mapped to level l − 1. The velocity v at point (x, y) maps to
point (2x, 2y) and its value at level l − 1 is 2v. The third situation is when the
velocity field in previous frames (t ≤ t0) is known, in which case the Kalman
filter is used to predict the velocity field at time t0 + 1.
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4.1 Using Images with Any Number of Channels

The aforementioned pyramidal elastic matching algorithm assumes that a single
channel image is used. It is easy to show that it can be extended to input images
with any number of channels. Suppose the multiple channel image is given by
Il(x, y) = (i1(x, y), ..., iD(x, y)), where D is the number of channels. For a simple
grayscale image, D = 1. In the case of an RGB image, D = 3. As mentioned in
the description of the proposed object model, we use feature images with D = 6
in our experiments. For multiple channel images, equation (2) can be rewritten
as:

εl(vi) = gl
i

�
Xl

j
∈O(Xl

i
)

D�
d=1

αd[cl
j,d − Il

d(Xj + vi)]
2 + β

Nl�
j=1

kl
ij‖vl

i − vl
j‖2

+ γ

Nl�
j=1

l
l
ij‖X

l
i + (v0

i )l + v
l
i − T

l
i − (Xl

j + (v0
j )l + v

l
j − T

l
j)‖2 (10)

in which, αd is the coefficient of dimension d. Its differential equation is given
by:

∂El

2∂(vl
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�
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)l)τ
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Nl�
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j)τ )

+ 2β

Nl�
j=1

k
l
ij (vl

i − v
l
j + (v0

i )l − (v0
j )l))τ (11)

4.2 Local Tuning

Note that equation (5) is obtained by assuming the Taylor expansion given in
equation (4) is valid. That is, the incremental velocity v should be small at each
point of the object (eg. |vx| < 1 and |vy| < 1). In other words, the initial velocity
needs to be close to the actual velocity. By using a pyramidal image structure,
the above condition is met if the elastic matching algorithm starts at a higher
level in the pyramid where the velocities along the X axis and Y axis are small
enough, or if the given initial velocity is close enough to the actual velocity. In
addition to these methods, an iterative local tuning algorithm is designed to
adjust the velocity locally, such that the final incremental velocity at each point
is small enough. This local tuning algorithm is especially useful when only some
of the object points have velocity values larger than 1 along the X axis or the
Y axis. The local tuning algorithm is described below.

(1) For point X l
i , assume every other vl

j is fixed for j �= i, then vl
i can be

obtained by solving the binary linear equations (6) and (7).
(2) If the incremental value |vx| > 1, then the new value v0

x = v0
x + sign(vx).

If the incremental value |vy | > 1, then the new value v0
y = v0

y + sign(vy) where
sign(x) = 1 if x > 0, and sign(x) = −1 if x < 0.
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(3) Repeat steps (1) and (2) until all the incremental values |vx| < 1 and
|vy| < 1, or the maximum number of iterations is met. The final velocity for
each point is v0 + v.

When the occlusion hypothesis changes at some of the points, the local tuning
algorithm is also used to recompute the velocity at those points.

4.3 Occlusion Reasoning

When occlusion exists, it is necessary to update the occlusion hypothesis for
each point when its velocity is available. A reasonable assumption about oc-
clusion is that an object is occluded gradually instead of suddenly. It is also
assumed that an occluded object becomes unoccluded gradually instead of sud-
denly. Therefore, only those points near the object boundary or the boundary
of the occluded area are chosen as candidates to be updated. In order to de-
cide whether a point is occluded or not, the Mahalanobis distance between the
feature vector associated with the countour point c(x, y) and the feature vector
associated with the corresponding image point I(x + vx, y + vy) is computed as
d = [c(x, y) − I(x + vx, y + vy)]Σ−1[c(x, y) − I(x + vx, y + vy)]τ . If d is above a
certain threshold, this point is classified as occluded, otherwise it is classified as
unoccluded. When multiple objects correspond to the same point in the image,
only one object can be visible at this image point. The object with the mini-
mum distance d to this point in the image is classified as the visible object at
this image point.

After the occlusion reasoning is performed, the resulting information is fed
back to the elastic matching algorithm, and the tuning algorithm is used to
adjust the velocity field locally. At most two iterations are needed for the occlu-
sion hypothesis to be updated and the resulting information fed back to elastic
matching algorithm.

4.4 Adaptation of the Object Template

As an object moves, its shape and color features change dynamically. Thus, the
object shape model and the color features of the points on the object need to be
updated at each iteration. For a point which is not occluded, its feature point
is updated as: c(Xi, t + 1) = c(Xi, t) + ρ[I(Xi + vi; t + 1) − c(Xi, t)], Σ2(Xi; t + 1) =

Σ2(Xi; t)+ρ[(Ik(Xi + vi; t+1)−ck(Xi; t))(Ik(Xi + vi; t+1)−ck(Xi; t))
τ −Σ2(Xi, t)],

where ρ is a given learning rate.

5 Velocity Field Approximation Using B-Spline Surfaces

The elastic matching algorithm yields a mapping which minimizes an energy
function that takes into account both, feature similarity and shape distortion
during tracking. The computed mapping determines the displacement of each
point along the X and Y axes, i.e. the velocity of each point. However, this
mapping may also yield some noisy and false matches that do not reflect the
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actual motion of the object. Hence B-spline surfaces are used to smooth the
velocity field and suppress the effect of the noisy and false matches. Provided
the velocity in V = {vk} = {(vk,x, vk,y)} is known, the following procedure is
used to determine the NX ×NY B-spline control points in order to approximate
V . For each point location Xk = (xk, yk) of the object, the corresponding B-
spline control parameter (ûk, v̂k) is estimated as:

(ûk, v̂k) = ((NX − m + 1) ∗ xk/W, (NY − n + 1) ∗ yk/H) (12)

where W and H are the width and height of the object respectively. The esti-
mated velocity component along the X axis v̂k,x is expressed in terms of (ûk, v̂k)
as follows:

v̂k,x(ûk, v̂k) =
m−1�
i=0

n−1�
j=0

d
x
i′
k

,j′
k

N
m
i (u1

k)Nn
j (v1

k) (13)

where the di,j ’s are the control points which determine the association of a
given point on the B-spline surface with the control parameters (u, v), Nm

i (u)
and Nn

j (v) are the basis functions along the u and v axes respectively, and n

and m are the orders of the B-spline (m = n = 4 in our case). Here i′k = i + u0
k,

j′k = j + v0
k, (u0

k, v0
k) = (�ûk�, �v̂k�), and (u1

k, v1
k) = (ûk − u0

k, v̂k − v0
k). Equation

(13) can be further generalized as v̂k,x(ûk, v̂k) =
∑NX

i=0
∑NY

j=0 dx
i,jBk(i, j), where

Bk(i, j) = Nm−1
i−û0

k
(û1

k)Nn−1
j−û0

k
(v̂1

k), if �ûk� ≤ i < �ûk� + m − 1 and �v̂k� ≤ j <

�v̂k� + n − 1; Bk(i, j) = 0 otherwise.
For each point associated with an object, minimization of the following ob-

jective function is used to determine the values of the L = NX × NY control
points:

E =
N�

k=1
‖vk,x − v̂k,x(ûk, v̂k)‖2 (14)

where (ûk, v̂k) are the estimated control parameters computed using equation
(12), and N is the total number of points of the object. The minimization entails
solving a system of equations given by ∂E/∂dx = 0, which, in turn, can be
represented by equation Adx = bx, where A is given by:

�
����������

�N
k=1 Bk(0, 0)Bk(0, 0) ...

�N
k=1 Bk(0, 0)Bk(NX , NY )

�N
k=1 Bk(0, 1)Bk(0, 0) ...

�N
k=1 Bk(0, 1)Bk(NX , NY )

... ... ...

�N
k=1 Bk(NX, NY )Bk(0, 0) ...

�N
k=1 Bk(NX , NY )Bk(NX , NY )

	









�

and bx = (
∑N

k=1 Bk(0, 0)vk,x,
∑N

k=1 Bk(0, 1)vk,x, ...,
∑N

k=1 Bk(NX , NY )vk,x)τ .
The system of equation can be solved using LU decomposition. The value of

NX and NY is usually small for rigid object tracking. In our experiments, 4 × 4
control points can approximate the velocity field in the image plane resulting
from 3-D movement of a planar object (translation, rotation or a combination
of the two) with negligibly small mean squared error (MSE). Although we have
not examined the MSE resulting from the approximation, using 4 × 4 control
points, of the velocity field in the image plane resulting from 3-D movement of
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a 3-D object, our experiments on human tracking yield very good results. Since
an elastic object with restricted deformation can be usually approximated by
a rigid object with articulated motion, the resulting velocity field can still be
approximated using 4 × 4 control points. More control points are necessary only
for modeling complex and/or abrupt motion and deformation of a highly elastic
object. To further reduce the computational complexity, the values of Nm

i and
Nn

i can be precomputed and stored in a lookup table.

6 Velocity Estimation Model

A Kalman filter is used to estimate/predict the velocity field of an object. Note
that the term velocity field, in the Kalman filter algorithm, actually denotes the
control point values resulting from the B-spline approximation of the velocity
field. The canonical Kalman filter used in this paper can be described using the
following equations:

V̂−
d,k+1 = V̂+

d,k
+ qk (15)

Zk = V̂−
d,k

+ vk (16)

where Vd is the estimated/predicted velocity field, and Zk is the actually mea-
sured velocity field. Equation (15) represents the prior estimation of Vd whereas
equation (16) describes the linear relation between the estimated Vd and the
actually measured velocity field Zk. Variables qk and vk represent random noise
in the prior estimation and actual measurement of the velocity field respectively.
Both qk and vk are modeled as Gaussian white noise with distributions N (0,Q)
and N (0,R) respectively.

7 Experimental Results

The proposed tracking algorithm has been applied to various tracking scenarios.
In our current experiment, the objects are initialized manually by labeling their
contours over the first image. Figure 3(a) shows the snapshots of the tracking
of an eraser in a video while the camera is zooming in. Figure 3(b) shows the
snapshots of the tracking of an eraser in a video while the camera is zooming out.
Figure 3(c) shows the snapshots while the tracked object is rotating in the image
plane and Figure 3(d) shows the snapshots while the scene is subject to global
change in illumination. Figure 3 shows that the proposed tracking algorithm can
handle large changes in object size (i.e., significant scale changes) and handle
object rotation and scene illumination change due to the adaptive nature of
the object template and the robustness of the features used. Experiments are
also conducted on face tracking. Figure 4(a) shows the tracking result when
the tracked face exhibits large scale changes in the video. Figure 4(b) shows the
tracking result in the presence of occlusion thus demonstrating that the occlusion
reasoning is very robust in handling occlusions. Figure 4(c) shows the tracking
results on two faces where one face occludes another. The various tracking results
can be viewed in the video accompanying this paper.
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(a) Zoom in (b) Zoom out (c) Rotation

(d) Illumination change

Fig. 3. Zooming, rotation, illumination change

(a) Face scaling (b) Face occlusion (c) Two face tracking

Fig. 4. Face Tracking

8 Conclusions

A novel hybrid region-based and contour-based multiple object tracking model
using elastic matching is proposed. The elastic matching algorithm exploits both,
the spectral features and contour-based features of the tracked objects, making it
more robust and general in the context of object tracking. The proposed elastic
matching algorithm uses a multiscale optical flow computation algorithm to com-
pute the velocity field. This prevents the multiscale elastic matching algorithm
from being trapped in a local optimum unlike conventional elastic matching
algorithms that use a heuristic search procedure in the matching process. The
proposed tracking framework can be viewed as a generalization of the traditional
linear Kalman filter where the multiscale elastic matching algorithm is used to
compute the velocity field which is then approximated using B-spline surfaces.
The control points of the B-spline surfaces are directly used as the tracking vari-
ables in a Kalman filtering model. The B-spline approximation of the velocity
field is used to update the spectral features of the tracked objects in the Kalman
filter model. The dynamic nature of these spectral features are subsequently used
to reason about occlusion. Experimental results on tracking of multiple objects
in real-time video are presented.

Experimental results show that the proposed algorithm is very efficient in han-
dling occlusions and changes in scale and illumination. However, it is observed
that a single object hypothesis is not sufficient to handle all possible tracking
scenarios. Without a suitable foreground or background model, this scheme is
not suitable for long term tracking. Future work will integrate the optical flow
based elastic matching model with a foreground object detection algorithm and
particle filtering algorithm to achieve robust and consistent tracking.
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Abstract. Two basic facts motivate this paper: (1) particle filter based
trackers have become increasingly powerful in recent years, and (2) object
detectors using statistical learning algorithms often work at a near real-
time rate.

We present the use of classifiers as likelihood observation function of
a particle filter. The original resulting method is able to simultaneously
recognize and track an object using only a statistical model learnt from
a generic database.

Our main contribution is the definition of a likelihood function which
is produced directly from the outputs of a classifier. This function is an
estimation of calibrated probabilities P (class|data). Parameters of the
function are estimated to minimize the negative log likelihood of the
training data, which is a cross-entropy error function.

Since a generic statistical model is used, the tracking does not need
any image based model learnt inline. Moreover, the tracking is robust
to appearance variation because the statistical learning is trained with
many poses, illumination conditions and instances of the object.

We have implemented the method for two recent popular classifiers:
(1) Support Vector Machines and (2) Adaboost. An experimental evalu-
ation shows that the approach can be used for popular applications like
pedestrian or vehicle detection and tracking.

Finally, we demonstrate that an efficient implementation provides a
real-time system on which only a fraction of CPU time is required to
track at frame rate.

1 Introduction

We address the problem of real-time detection and tracking of an object using
only a generic statistical model of the object. The idea is to bring together two
popular fields of computer vision: statistical learning algorithms and particle fil-
tering. Statistically based object detector using boosting [1] and support vector
machine (SVM) [2] are now fast enough to run in real-time. Furthermore, parti-
cle filter based trackers [3,4] provide successful solutions in following objects in
clutter from a video. They have been used with edge-based [4], appearance [5] or
kinematic [6] models, most of them, learnt for the specific object to be tracked.

We propose to use a generic model of the class of the object, computed of-
fline by a statistical learning algorithm from a database. The resulting approach

R. Vidal, A. Heyden, and Y. Ma (Eds.): WDV 2005/2006, LNCS 4358, pp. 218–231, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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is able to detect and track any instance of the generic object model. A classi-
cal particle filter is used to estimate the posterior probability density function
(posterior) of the state of the object.

Object detection and tracking methods are used in many applications. Most
popular ones are pedestrian tracking [7], vehicle tracking [8] or face tracking [9].
The problem is complex because each instance of the object class, for example
my sister face, is different from other instances (other faces). Moreover, the
appearance (image) of my sister face is not the same according to illumination
and pose conditions. This example shows the real difficulty to have a generic
model of an object.

Since object recognition methods working at a near real-time rate are recent,
there is not many works related to visual tracking using statistical learning
algorithms. The introduction of support vector tracking [8] by Avidan is the first
paper which uses the output of an SVM object detector to perform a tracking
task. The idea is to link the SVM scores with the motion of the pattern tracked
between two images. This method provides a solution to track classes of objects.
No model of the current object is learnt but the classifier uses a generic model
learnt offline. Williams [10] proposes a probabilistic interpretation of SVM. He
presents a solution based on RVM (relevante vector machine) [11], combined
with a kalman filter to make a temporal tracking. RVM are used to link the
image luminance measure to the relative motion of the object with a regression
relation. However, this method supposes a learning step for the current object.

In [12], Okuma proposes an particle filter based approach which merges an
Adaboost detector [1] and color model in order to build the posterior probability.
The resulting system is able to recognize and track multiple players from a
hockey game video sequence. this paper does not use directly the classifier as an
observation function, as we propose here.

The paper is organized as follows. In section 2, we present the principle of
the method and how to use outputs of classifiers as the observation likelihood
function of a particle filter. Section 3 describes the image features extraction
and the two steps algorithm used to train the classifier. Experimental results
and real-time implementation are shown in section 4.

2 Principle of the Method

This section describes the object tracking method. We present a probabilistic
formulation of visual tracking and a sequential Monte Carlo technique (particle
filter) as a way to make it practical. Our main contribution is the definition of
an observation likelihood function from the outputs of a classifier.

2.1 Probabilistic Visual Tracking

Visual tracking can be seen as the estimation, at time t, of the posterior prob-
ability function p(Xt|Z0:t) where Xt is the hidden state (position) of the object
and Z0:t

.= (Z0, ...,Zt) denotes the temporal data sequence (images). In the case
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of a conditionally independent observation process and a Markovian prior on the
hidden states, the sequence of filtering distributions p(Xt|Z0:t) to be tracked are
defined by the recursive equation:

p(Xt+1|Z0:t+1) ∝ p(Zt+1|Xt+1)
∫
Xt

p(Xt+1|Xt)p(Xt|Z0:t)dXt (1)

Assuming that the distributions of probabilities are Gaussian, The Kalman filter
provides an optimum analytical solution. However, visual tracking applications
are highly non-linear and multi-modal problems. In this case, the posterior can
be estimated by sequential Monte Carlo techniques [3].

2.2 Particle Filter

Particle filtering [13,14] is a sequential importance sampling algorithm for es-
timating properties of hidden variables given observations in a hidden Markov
model. Standard particle filter assumes that posterior P (Xt|Zt) can be approx-
imated by a set of samples (particles). Moreover it also assumes that the obser-
vation likelihood P (Zt|Xt) can be easily evaluated.

A particle filter approximates the posterior using a weighted particle set
{(Xn

t , πn
t ) : n = 1, .., N}. Figure 1 describes the algorithm used here, also called

Condensation[14]

1. initialize {(Xn
0 , πn

0 )}N
n=1 from the prior distribution X0

2. for t > 0
(a) resample {(Xn

t−1, π
n
t−1)}N

n=1w into {(X′n
t−1, 1/N)}N

n=1

(b) predict, generating Xn
t ∼ p(Xt|Xt−1 = X

′n
t−1) to give {(Xn

t , 1/N)}N
n=1

(c) weight, setting πn
t ∝ p(Zt|Xt = Xn

t ) to give {(Xn
t , πn

t )}N
n=1 normalized

so
�N

n=1 πn
t = 1

(d) estimate X̂t
.
= 1

N

�N
n−1 Xn

t

Fig. 1. The particle filter algorithm (Condensation)

2.3 State Space and Dynamics

We want to track a region of interest (ROI) in the image plane It. The state
of this ROI is defined by it center c .= (x, y) (expressed into the image plane
reference) and a scale factor st between the ROI and the size of the images used
to train the classifier. The state Xt associated to the object is then defined by:

Xt
.= (ct, ct−1, st, st−1) (2)

For a state Xt, the corresponding ROI is extracted by:

R(Xt)
.= ct + stW, (3)
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where W is the 0-centered reference window with the same size then images used
in the training step.

A first order auto-regressive dynamics is chosen on these parameters:

Xt+1 = AXt + Bvt , vt ∼ N (0, Σ) (4)

Matrices A, B and Σ can be estimated from a set of sequences for which the
position of the object is known.

2.4 Observation Likelihood

This section describes the tracker likelihood function P (Z|X) which is defined
as the likelihood that the state of the object (position) is X according to an
observed image Z. Many particle filter based trackers use a likelihood function
linked to a distance between the model and the current particle to be weighted
like π = exp(−λ.d(., .)). The parameter λ must be adjusted to provide good
performances. The method described here does not use parameter of this kind.

Let us define a generic classifier m(f) that returns an uncalibrated real value
for the feature parameter f . This value can be a margin in the case of a SVM
classifier or a score in the case of an Adaboost algorithm. We propose to build the
likelihood function used to evaluate weights of the particle filter from m(f). Since
the likelihood function used by the particle filter is a probability: P (class|input)
must be such a value computed from the classifier output.

The classifier m(f) ∈] − ∞; +∞[ ranks examples well if : m(f1) < m(f2) then
P (class|f1) < P (class|f2). Generally, m(f) ∈ [amin; amax] (where amin and amax

depend of the problem and the classifier), and we want to map the scores into the
[0; 1] interval by rescaling them. if mr(f ) is the re-scaled score, the naive way is
to produce it by: mr(f ) = (m(f) − amin)/(amax − amin). However, the estimate
of P (class|f) by mr(f) does not provide well calibrated posterior probability
distribution (see [15] for details).

In [16], three calibration methods used to obtain calibrated probabilities from
Boosting are compared:

– Logistic Correction: [17] a method based on Friedman et al.’s analysis of
boosting as an additive model,

– Isotonic Regression: [15] a method used by Zadrozny and Elkan to cali-
brate predictions from Boosted naive Bayes, SVM, and decision tree models

– Platt Scaling: [18] a method proposed by Platt to transform SVM outputs
to posterior probabilities

Since Platt scaling can also be used to estimate probabilities from Boosting
[16], we use this method. In this section, we closely follow the description of Platt
calibration method. if m(f ) is the output of the classifier, calibrated probabilities
can be produced from the sigmoid:

P (positive|m(f )) =
1

1 + exp(A.m(f ) + B)
(5)
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where A and B are estimated using maximum likelihood estimation from a
calibration set (mi, yi) (mi = m(f i) and yi ∈ {0, 1} represent negative and
positive examples). A and B are computed by a non linear optimization of
the negative log likelihood of the training data, which is a cross-entropy error
function:

argmin(A,B){−
∑

i

yi log(pi) + (1 − yi) log(1 − pi)}, (6)

where

pi =
1

1 + exp(A.mi + B)
(7)

The easiest solution is to choose the same training set to fit the sigmoid then
the training set used to train the classifier. However, Platt shows that it causes a
biased estimate of the distribution of probability. A solution is to use a fraction
of the training set (70% for example), to train the classifier, and to use the other
fraction (30%) to estimate the parameters of the sigmoid. An other solution is
to use a cross-validation method (see [18] for details).

Using Platt scaling, the likelihood function is defined by:

P (Z|X) =
1

1 + exp(Â.m(f ) + B̂)
, (8)

with f the feature vector associated to the state X and Â, B̂ are the estimates
of A and B.

3 Learning Classification Functions

This section presents the features used to describe the image and the principle
of the learning algorithm, based on two steps: (1) a feature selection step using
an Adaboost algorithm and (2) a training step.

3.1 Features Extraction

A great number of object recognition methods (pedestrian, vehicles etc.) are
using Haar wavelets, or cascades of simple filters [19], to encode the image [7,20]
in order to obtain a compact description of the object.

Descriptors used here are inspired from these previous works. Figure 2 presents
the five T × T = 2t × 2t filters (F1, ...F5. used here ). All of them are: (1)
square filters of 0 mean value, (2) they allow to detect some symetries of the
target object, and (3) their computation can be greatly optimized by the pre-
computation of an integral image [9]. The image is then described by a vector
resulting of the response of the five filters at three different scales. For instance
for an image of 27 = 128 lines and 26 = 64 columns, the filter size for scale i
are 26−i × 26−i. The resulting vector of features has total size (64 + 96 ∗ 32 +
112 ∗ 48) ∗ 5 = 42560. In the following we will denote by F(W), the function that
returns the primitives vector for the window W.
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Fig. 2. An image is described by a vector resulting of the response of 5 filters at various
scales

3.2 Features Selection and Training

The features vector F(W) has a high dimension. Since the method has to be real-
time, the size of this vector is reduced using a features selection method inspired
from Tieu et Viola works [19]. They use Adaboost to select the best primitives.
We will denote by F∗(W), the function that returns the vector of the selected
primitives on W.

Two recent classifiers have been trained using a positive and negative data-
base:

– Adaboost [21] is a way to improve rates of success of a “weak” classifier (for
example a Bayesian rule), by training it on different learning subsets. Several
decision rules are so obtained. The final one being computed by a majoritary
concensus.

In order to classify an unknown example of given feature vector f = F∗(W),
it is sufficient to compare each selected component of f to the associated
threshold, namely the score of the object will be computed by :

m(f) =
∑
i=∈f

αi.hi(f ) (9)

where hi(f) returns 1 if component i is in the object class, 0 otherwise.
– SVM (Support Vector Machine) detectors [22,23] are based on the search

in parameter space of the separating hyperplane with maximal distance of
the nearest learning elements, called support vectors. Moreover, to allow
separation, data are imbedded in a higher dimension space by a non linear
transform. The decision function is computed by:

m(f ) =
l∑

i=1

α0
i .yi.K(f i, f) + b (10)

where yi is 1 or -1 wheter the exemple is or is not an object of the class, and
K(., .) is a kernel functionnal.

Using the classifier, the likelihood P (Zt|Xt = Xn
t ) is computed by:

P (Zt|Xt = Xn
t ) =

1

1 + exp
{
Â.m(F∗(cn

t + sn
t W)) + B̂

} (11)
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4 Experiment

This section presents experiment done in order to illustrate the method pre-
sented into the previous section, for two applications: (1) pedestrian detection
and tracking, and (2) vehicles detection and tracking.

4.1 Learning

The learning database (part of the MIT database) is composed of 600 images
for the pedestrian class (450 for the vehicle class) and of 900 images for the
non-pedestrian class (900 for the non-vehicle class). Each image of pedestrian
is 128 rows × 64 columns (w = 6, and h = 7) (64 rows × 64 columns for the
vehicles). Features extraction is limited to the first three scale factors. A vector
of 42560 (resp. 17455 for the vehicles) features is associated to each image.

Feature Selection. The size of the feature vector decreases to 40 after feature
selection. Figure 3 shows the features that best discriminate the two kinds of
object. Some of them correspond to symetries (Fig.3.a) others to object structure
(Fig.3.b for the head and Fig.3.e for the vehicle’s projector).

(a) (b) (c) (d) (e) (f)

Fig. 3. example of selected features for the pedestrian classifier ((a), (b) and (c))and
for the vehicle classifier ((d), (e) et (f)). The filter is superimposed to the image. Black
pixels represent the weight 1 and white pixels represent the weight -1.

Recognition. The two tested detectors (SVM and Adaboost) have been trained
from the learning database. For pedestrian recognition, their performances have
been evaluated from a test database constituted of 300 images of pedestrian
and 450 images of non-pedestrian. In the case of the Adaboost and for a non
detection rate fixed to 1%, table 1 shows the evolution of the good detection rate
regarding the number of features retained : 40 seems to be a correct compromise
between number of features and good recognition rate.

Calibrated Probabilities. Outputs of the classifiers do not provide well cal-
ibrated posterior probabilities. Figures 4 (a) and (b) show the histograms for
p(x|y = ±1), output of SVM (fig.4(a)) and output of Adaboost (fig.4(b)). One
can notice that the probability density functions estimated by these histograms
are not gaussian. Figures 4 (c) and (d) show calibrated probabilities computed
from (a) and (b) with Platt scaling method presented section 2.4. The sigmoids
will be used as the observation likelihood function into the particle filter.
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Table 1. Performances of the Adaboost detector according to the number of selected
features, for a constant false detection rate of 1%(for pedestrian recognition)

Number of selected features 30 40 80

% of good detections 85 90 92
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Fig. 4. Example of calibrated probabilities produced with Platt scaling method for
SVM classifier and Adaboost classifier on the pedestrian data set. (a) and (b) are
The histograms for p(x|y = ±1). The solid line is p(x|y = 1), while the dashed line
is p(x|y = −1). (c) and (d) are the posterior probability distributions, defined by a
sigmoid function fitting from a training set.

4.2 Tracking

Initialization. Tracking initialization is not a simple problem. Most of the time,
it is supervised. The proposed method naturally automates this stage. Object
localization on the first image is achieved scanning the translations and the scale
factor with the detector. Particles are then initialized using importance sampling
algorithm from the N higher scores provided by the classifier.

Posterior as an Observation Model for Tracking. The main idea of this
paper is to use posterior probabilities (calibrated probabilities) of a classifier as
the observation model of a tracker. We made the assumption that the outputs
of the classifier are linked to the position of the object to be tracked.

Scores provided by the detector have to be correlated with the notion of object
proximity. To define that link, the evolution of these measurements regarding
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variations of the window of interest around the ideal position has been obtained.
For a couple of pedestrian examples, figure 5 illustrates the relationship between
the score of the classifier and an horizontal translation of the measurement win-
dow of interest regarding the real one. We compare SVM and Adaboost. Both
the detectors have a similar behavior: the measured score decreases continuously
if the translation increases. Same conclusions can be noticed from horizontal an
scale factor variation. We conclude that the output of a classifier can be used as
an observation model. Moreover, Avidan [8] obtains similar results for SVM.
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Fig. 5. Output of two classifiers (SVM and Adaboost) according to the horizontal
translation, for two unseen pedestrians. A maximum is present at the true position.

Figure 6 compares the Adaboost and the SVM classifiers for pedestrian track-
ing (200 particles were used). Time variations of horizontal position (Fig. 6.a)
and vertical position (Fig. 6.b) are presented. Very similar results are obtained
for both the methods. Concerning the scale factor, the same study have been
conducted and the conclusions are identical. This example illustrates a large part
of the tests realized for whose the two classifiers give equivalent results.
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Fig. 6. Horizontal (a) and vertical (b) position of the object estimated by the tracker
for a pedestrian sequence. The SVM approach and the Adaboost approach give similar
results. (c) and (d) are two images extracted from the video sequence.

Since results are quite similar using SVM or Adaboost classifier, the following
experiment use only the Adaboost classifier. Experiment presented now under-
line the strengths and weaknesses of the method.
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Pedestrian and Vehicle Tracking. The aim of this section is to compare the
method with a reference tracker algorithm. The observation model used here is
not directly learned from the appearance of the object to be tracked but from a
database of other objects of the same category. We compare our method to the
Camshift tracker [24,25] (OpenCv implementation), considered as a reference
appearance tracking algorithm.

C
a
m
s
h
i
f
t

O
u
r
 
m
e
t
h
o
d

#410 #504 #515 #537 #597

Fig. 7. Example of pedestrian tracking (The video sequence comes from Caviar data-
base. Upper images show results obtained for the tracker and lower images show results
obtained for the Camshift Tracker.

Figure 7 shows the result of the two methods for pedestrian tracking. Se-
quences are taken from the Caviar Database1. The Camshift provides poor
results when the background color is similar to the pedestrian color (the ob-
servation model used for the Camshift is based on color histograms). As our
method learns a model using a wide range of cluttered backgrounds, the result-
ing tracker provides good performances against cluttering backgrounds

Figure 8 illustrates results for a vehicle tracking sequence (sequence from
PETS). Since the background is almost constant, results obtain by the two
method are quite the sames.

Managing Occlusions. The tested sequence presents a standing pedestrian
temporarily occluded by another one. Figure 9 shows the corresponding results.
For each image, the marginal probability density function (pdf) associated to
the x coordinate (horizontal position) is constructed from the set of particles.
When the tracked person is occluded by the other one, the pdf becomes bi-modal.
After crossing, the pdf turns uni-modal (almost gaussian). Multi target tracking
is naturally managed by the particles filter. In this example, the algorithm keeps
on tracking the initial target since the output of detector in use (Adaboost) is
greater for front views than for side view . This problem is due to an unbalanced
learning database. Another example is presented further for which the tracked
target changes.

1 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Fig. 8. Example of vehicle tracking (The video sequence comes from PETS database:
Performance Evaluation of Tracking and Surveillance). Upper images show results ob-
tained for the tracker and lower images show results obtained for the Camshift Tracker.

-150 -100 -50 0 50 100
horizontal position

p(
X t

|Z
t)

-150 -100 -50 0 50 100

p(
X t

|Z
t)

-150 -100 -50 0 50 100

p(
X

t|
Z t

)

-150 -100 -50 0 50 100

p(
X t

|Z
t)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

horizontal position horizontal position horizontal position

Fig. 9. Example of an occlusion of an object by an other object of the same class. When
the dark clothed pedestrian walks in front of the clear clothed pedestrian, the marginal
posterior probability function for horizontal position estimated from the particle filter
function becomes bimodal ((b), (d), (f) and (h)). White frames represent particles.

Managing Appearance Variations. As shown on figure 10 the method is ro-
bust regarding to appearance changes due for example to lightning modifications
(shadowed areas), or object’s pose modification (face, profile or back oriented
pedestrian).

Weakness. Figure 11 illustrates the main weakness of this method: as the
measurement function is based on a global learning of the object’s appearance,
the tracker will give up with the initial target if another one yielding to a higher
output of the detector passes near the initial one.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Real-Time Tracking with Classifiers 229
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(a) t=0.3s (b) t=15s (c) t=20s (d) t=38s

Fig. 10. Tracking under strong appearance variations of the object. Here, both illumi-
nation and object pose variations occur.

(a) (36.2s) (b) (37.0s) (c) (37.5s) (d) (38.5s)

Fig. 11. Weakness of the method. The tracker fails and changes of target during the
sequence because the new target has a higher classifier score then the initial one.

4.3 Real-Time Implementation

Simulation and the time development were done with Matlab , leading to far
from real computation times.

The algorithms have been rapidly transfered to C++ , using an efficient matrix
library developped in the laboratory and mimicking Matlab syntax.

On a pentium IV 2Gz, the tracking is done at 16ms using 200 particles and
VGA images.

The crucial implementation part is the computation of the Haar masks on
the spots given by the particle filter. This can be achivied with great efficiency
using integral images containing the cumulated sums of some interest part of the
current image along rows and columns. Once this image computed, each mask
evaluation turns in a linear combination of at most eight interpolated value in
the integral image.

5 Conclusion

In this paper, we have shown how recent classifiers can be used as observation
model into a particle filter. The resulting application is a generic Real-Time
object detection and tracking method, robust to occlusion and both illumination
and pose variations.

We have proposed a new observation model which does not need any manual
parameter adjustment. A statistical learning algorithm is used to produce a
generic model of the object to be tracked. When an unseen object appears in
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the image, it is detected and tracked. Experiment show that the classifier score
decreases continuously according to both the translation and the scale factor
error between the estimated and the true position of the object. This is an
essential key point in order to use this function as an observation model into a
particle filter.

The system has been tested for both pedestrian and vehicle tracking, and
compared to the Camshift algorithm. The solution proposed here can also be
used to track a specific object by using a learning database composed by a set
of images of the object.

The Real-Time implementation of this method leaves time to perform other
tasks within the tracking as each image can be treated at less than half video
rate on a three years old laptop.
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Abstract. This paper is an argument for two assertions: First, that
by representing correspondence probabilistically, drastically more cor-
respondence information can be extracted from images. Second, that
by increasing the amount of correspondence information used, more ac-
curate egomotion estimation is possible. We present a novel approach
illustrating these principles.

Wefirst present a framework for usingGabor filters to generate such cor-
respondence probability distributions. Essentially, different filters ’vote’
on the correct correspondence in a way giving their relative likelihoods.
Next, we use the epipolar constraint to generate a probability distribution
over the possible motions. As the amount of correspondence information
is increased, the set of motions yielding significant probabilities is shown
to ’shrink’ to the correct motion.

1 Introduction

Perhaps the single most pervasive structure in computer vision is that of cor-
respondence - two points in different images that are said to correspond to the
same point in space. Given a set of correct correspondences, powerful techniques
exist to do many things - find camera egomotion, 3-D depth, motion segmen-
tation, etc. Thus most algorithms proceed by first matching points, and then
using these correspondences to solve the problem at hand. Yet, it is well known
that, in general, low level measurements do not provide sufficient information to
match. This is not the paradox it might first seem to be. There are essentially
3 conditions resulting in correspondence being difficult to establish- repetitive
structure in the scene, aliasing, and the aperture effect [1]. Feature detectors
such as corner detectors [2] or SIFT features [3] may be thought of as algorithms
that locate points in the scene that are relatively immune to these effects.

In this paper, we propose that a different structure could be used, namely,
a probability distribution over the possible correspondences. There are several
reasons to use such an approach. First, at those points in the scene for which
correspondences are most easily found (e.g. non-repetitive feature points), we
should expect that probability distribution to be nearly zero except at the true
correspondence, meaning that no information needs to be given up at these

R. Vidal, A. Heyden, and Y. Ma (Eds.): WDV 2005/2006, LNCS 4358, pp. 232–242, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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points. In our experiments, feature points generally do yield localized proba-
bility distributions, though often so do points that would not be detected as
feature points. Second, it is possible to represent arbitrary ambiguities in the
correspondence, be they the result of aperture, repetitive structure, lack of tex-
ture, etc. Third, and perhaps most importantly, a probability distribution can be
reliably found for every point in the scene. Though a point with a ”spread out”
distribution may provide weaker information than one with a sharp ”peak”, it
is advantageous to make use of as much of the available information as possible.

Using these correspondence probability distributions leads naturally to a mea-
sure of the probability of different 3-D motions. This measure is robust to oc-
cluded points and independent motion. We use the epipolar constraint to give
an expression which is easily and quickly calculated. We will show that when a
small number of correspondence distributions are used, a significant set of mo-
tions generally yield significant probabilities. However, because our framework
gives us a very large number of correspondence distributions, they can all be
used to reduce this set, yielding a very accurate egomotion estimate.

We first give a simple contrast invariant technique for calculating a corre-
spondence probability distribution. Next, we show how these distributions may
be used to calculate egomotion for a calibrated camera. We will present exper-
iments showing that this egomotion technique is comparable in accuracy to a
epipolar minimization algorithm based upon many manually extracted pixel-
accurate correspondences. We will also show that this algorithm performs well
in dynamic scenes, where objects in view violate the common assumption in
egomotion algorithms that only the camera is moving.

1.1 Related Work

It is well known that correspondences cannot be reliably estimated from low-level
measurements [4]. Simoncelli et al. [5] assume image gradients are corrupted by
a Gaussian noise model, resulting in a probability distribution over the optical
flow. This distribution is then used to estimate a single optical flow vector as
output. Clocksin [1] estimates optical flow distribution functions for each point,
and then uses spatiotemporal support regions to estimate more accurate (non-
probabilistic) flow vectors each point.

Our approach to computing correspondence probability distributions is based
on the phase of tuned Gabor filters. Phase has been widely used in the compu-
tation of stereo disparity [6] [7] as well as in one of the best performing optical
flow algorithms [8]. We use the efficient Gabor filter implementation of Nestares
et al. [9].

Egomotion and Structure from Motion are among the most heavily researched
areas of computer vision research, and rather than attempting to summarize all
references, the reader is referred to a survey [10]. The approach most similar to
the one here is by Makadia et al. [11]. There, the authors use traditional feature
points, but rather committing to an explicit matching, they search for a motion
such that each feature point has a compatible point in the other image satis-
fying the epipolar constraint. Their approach can be phrased probabilistically.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



234 J. Domke and Y. Aloimonos

The principal difference with the current work is that we extract correspondence
information for all points in the image, with out use of a feature detector. This
means both that additional correspondence information is available, and that
it is not necessary for the same point to be reliably detected as a feature. This
drastically increased amount of correspondence information results in major in-
creases in accuracy and robustness.

2 Correspondence Probability Distributions

Given a point s in one image, we would like to represent the probability that it
corresponds to a point q in the next image. We should represent the probability
that s moves to an arbitrary q, not necessarily with integer coordinates. We cope
with this by first approximating the probability that s matches to a pixel q̂,
having integer coordinates. The probability that s matches to an arbitrary point
is then represented via a Gaussian function. That is, we take the probability
that s corresponds to q to be

ρs(q) = max
q̂

ρs(q̂) exp(−||q̂ − q||2) + α,

where the points s, q and q̂ are on the image plane, and ||·|| denotes the Euclidean
norm. It will be seen later that this unusual form of interpolation simplifies the
method. To represent the fact that ρs(q̂) may be misleading- for example, if
s becomes occluded, or belongs to an independently moving object- we add
a constant α. This limits the influence or any single point to the egomotion
probabilities.

Now, we want to find the probability that some pixel s corresponds most
closely to another pixel q̂. There are many possible ways to do this, but we
follow many others in basing our approach on Gabor filters. These widely used
filters can be tuned to different frequencies and orientations to provide a local
measurement of phase. Correspondence is then estimated by exploiting the fact
that phase will be nearly the same for corresponding points. Fleet [6] shows how
the different filters form a voting scheme for stereo disparity. Our approach is
similar, but more than ensuring the highest ”score” for the most likely correspon-
dence, we would like the scores to reflect the appropriate probabilities. Suppose
the phase for the filter with orientation l and frequency ω at a point a is φl,ω(a).
We would like to consider points with very nearly matching phase to be likely
to correspond. Simultaneously, any single filter, because of noise, may be unreli-
able. We therefore take the probability given by a single filter (l, ω) that s and q̂
match to be proportional to exp(−|φl,ω(s) − φl,ω(q̂)|2) + β. The added constant
of β is equivalent to taking a certain probability that the filter’s information is
wrong, perhaps because of occlusion or noise. Combining the probabilities over
all filters then gives us

ρs(q̂) = Cs

∏
l,ω

[exp(−|φl,ω(s) − φl,ω(q̂)|2) + β]
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Fig. 1. Example optical flow probability distributions. Left column: first image, with
the point whose correspondence is being considered marked. Center column: second
image. Right column: probability distribution over the points in the second image,
with probability encoded as color.

Where Cs is chosen so that
∑

q̂ ρs(q̂) = 1. In all experiments shown, we have
used β = 1. Some example distributions are shown in Figure 1. Though we will
not focus on this here, we should note that the above approach only uses the
phase of the Gabor filter response, and is thus highly contrast invariant.

In all results shown here, we have used Gabor filters with four orientations,
and four frequencies. For the sake of computational efficiency, a low threshold
can be used, where if ρs(q̂) < ρmin, it is taken as equal to zero, and therefore
removed from consideration. It is important to note that the approach we have
outlined here will give unpredictable behavior when a point which is visible in the
first image becomes occluded. The egomotion approach below does not attempt
any filtering to remove these points. Nevertheless it is robust to this behavior,
as well as being robust to independently moving areas.

3 Egomotion Probability Distribution

Given the correspondence probability distributions for all points, we would like
to calculate the relative probabilities of different 3-D motions. First, given a
line l in homogeneous coordinates, we will need the minimum distance on the
image plane between that line and a point p. If the line is normalized by taking
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l ← l√
l21+l22

, and p is normalized by p ← fp
p3

, with f the focal distance, then the

distance is simply pT l.
Now, given the correspondence probability distribution for a single point s,

we take the probability of a given motion hypothesis E to be the maximum
probability ρs(q) such that s and q satisfy the epipolar constraint, qEs = 0.

ρs(E) = max
q:qEs=0

ρs(q)

Here q is an arbitrary point, not necessarily having integer coordinates. We can
see how to calculate the above by substituting our expression for ρs(q):

ρs(E) = α + max
q:qEs=0

max
q̂

ρs(q̂) exp(−||q̂ − q||2)

ρs(E) = α + max
q̂

max
q:qEs=0

ρs(q̂) exp(−||q̂ − q||2)

Observe that the above expression does not require us to explicitly find q. We
only need the minimum distance between q̂ and some q on the line Es. Hence,

ρs(E) = α + max
q̂

ρs(q̂) exp(−(q̂T l(E,s))2)

where the line Es is normalized as

l(E,s) =
Es√

(E1s)2 + (E2s)2

where E1 and E2 are the first and second row of E, respectively. The final
egomotion probability in the form in which it is computed is given by combining
the information given by all points:

ρ(E) = C
∏
s

[α + max
q̂

ρs(q̂) exp(−(q̂T l(E,s))2)]

Where C is chosen so that
∑

E ρs(E) = 1. This can be calculated quickly and
directly from the correspondence probability distributions with no iteration. In
our results, we have used α = 1.

3.1 Egomotion Algorithm

To be totally accurate, our framework does not give a literal answer about what is
the correct egomotion, but rather a way to calculate a distribution over the set of
motions. Still, we use a simple technique to try to approximate argmaxE [ρ(E)].
Though our technique is not guaranteed to find the actual maximum, as we will
discuss later, this is unlikely to make much different in performance. This is
due to the fact that all parameters yielding significant probabilities tend to be
contained in a very small volume of the parameter space.
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First, we give our parameterization of E. We took 2 somewhat unusual pa-
rameters to represent the translation, θ and φ, and 3 parameters to repre-
sent the rotation rx, ry, and rz . We then take tx = sin(θ), ty = sin(φ), and

tz =
√

1 − t2x − t2y. If ω is a vector storing the three rotational parameters, we

take R as the rotation matrix representing a rotation of angle |ω| about the unit
vector ω/‖ω|. We then take the usual E = [(tx, ty, tz)T ]×R.

To maximize ρ(E), we first sample the parameter space equally in each of
the 5 dimensions. (In the experiments given below, we used 11 points equally in
each dimension, for a total of 115 samples.) This is followed by a gradient search
initialized to each of several sample points yielding the highest probabilities.
(Below we used the best 100 sample points, though in practice, a large fraction
of these converge to the same answer, suggesting fewer points are necessary.)

Finally, two implementation notes: First, notice tz is only well defined when
|θ| + |φ| ≤ π/2. Since it is more convenient to use parameters whose range is
independent, in our implementation, we use parameters α and β, taking θ =
(π/4)(α − β) and φ = (π/4)(α + β). α and β can then be allowed to vary
independently from -1 to 1. Second, when maximizing ρ(E), numerical properties
are much improved by instead considering log(ρ(E)). For simplicity, we will not
discuss these issues further.

4 Experiments

4.1 ’Gold Standard’ Comparison

As a first experiment, we examine the relationship between the accuracy of the
egomotion estimate and the number of correspondence distributions used. To
give a rigorous and algorithm independent comparison, we used a least-squared
epipolar minimization, based on 46 manually selected pixel-accurate correspon-
dences. The least squared-epipolar minimization was initialized to the ground
truth motion. This experiment uses two synthetic images from the well-known
SOFA image database1 (Figure 2) . While using synthetic images is unsatisfac-
tory in some ways, the availability of the exact ground truth motion is necessary
to compute errors. (The obvious way to attain the ’ground truth’ for a real
sequence would be to compute the motion from manually extracted correspon-
dences, but here this very technique is being used for comparison.) We measure
separately the translational and rotational error of the egomotion estimates. For
the translational error, we compute the Euclidean distance |t − t̂| between the
estimated focus of expansion t, and the true focus of expansion t̂, where each is
on the unit sphere. Similarly, for the rotational parameters, we calculate |ω − ω̂|,
where ω is a vector containing the three rotational parameters. For each size,
the two algorithms were run on random subsets of that size. The mean errors
for each size are shown in Figure 3. For reference, we have also included the

1 SOFA synthetic sequences courtesy of the Computer Vision Group, Heriot-Watt
University (http://www.cee.hw.ac.uk/ mtc/sofa)
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Fig. 2. A synthetic sequence, with manually extracted correspondences marked
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Fig. 3. Mean errors for different numbers of correspondences or correspondence distri-
butions

results of running the algorithm proposed in this paper on the manually ex-
tracted matches. Here, we simply take ρs(q̂) = 1 when s corresponds to q̂ and
0 otherwise. For the algorithms using hand established matches, the means are
taken over 100 random subsets of each size. For the results using correspondence
probability distributions, means are taken over 25 random subsets.

It can be observed that for any given number of correspondences, the epipolar
minimization will perform somewhat better than our technique on an equal
number of probability distributions. Nevertheless, when using a large number of
correspondences, our automatic technique is actually able to perform comparably
to this ’Gold Standard’ algorithm run on manually generated pixel-accurate
correspondences. The technique’s success is due not to the way it processes the
correspondence information, but rather to the abundance of information that is
available to it.

4.2 Effects of More Probability Distributions

We would like to illustrate exactly how it is that the use of many distributions im-
proves performance. To make the process easier to visualize, we fix three of the
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Fig. 4. Three plots, each showing the computed probabilities as a function of θ and
ry. All other parameters are fixed to the ground truth. Upper Left: 5 correspondence
distributions. Upper Right: 50 distributions. Bottom: 500 distributions.

parameters to the correct ground truth. It is then possible to plot ρ(E) as a func-
tion of the remaining two parameters, θ and ry , each sampled at 401 points. Figure
4 shows this for increasing numbers of input correspondence distributions. Mathe-
matically, two correspondences known with perfect accuracy would give the exact
answer. Nevertheless, a small change in the translation can be compensated by a
small change in the rotation to yield similar epipolar lines. Thus, the uncertainty in
the correspondence leads to an ambiguity in the motion. This ambiguity is reduced
in the presence of additional correspondence information. It is for this reason we
say that a better maximization of ρ(E) is unlikely to significantly improve perfor-
mance. Given a small number of matches, there will be a large volume in the para-
meter space of E all yielding similarly high probabilities. Finding a motion with a
slightly higher probability can only be expected to slightly improve performance.
On the other hand, as the number of input probability distributions increases, the
volume of the parameter space with a high probability ’shrinks’ to the correct an-
swer. To put it in a different way, suppose we had access to a limitless number of
correspondence probability distributions. In the limit, the egomotion probabilities
would become ρ(Ê) = 1 for the correctmotion Ê, and ρ(E) = 0 for all others. Thus
any algorithm which reliably finds an E with ρ(E) within some bound of the opti-
mal one will have its error decrease towards zero as the amount of correspondence
information is increased.
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4.3 Egomotion in Scenes with Independent Motion

As a further test of our technique, we used the well-known ’Yosemite’ sequence.
The clouds at the top of the images are moving independently, and nonrigidly.
Figure 5. Notice that the clouds move relative to the epipolar lines, while the
rest of the image does not.

Fig. 5. Two frames from the ’Yosemite’ sequence, with the epipolar lines found by our
method overlaid
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Fig. 6. Frame pairs from the ’Swim’ sequence, with the epipolar lines found by our
method overlaid

Finally, we captured a real sequences including independent motion. As shown
in Figure 6 the rigid motion for the static background was found with high
accuracy, while being undisturbed by the independently moving foreground.
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5 Conclusions

The use correspondence probability distributions generates a large amount infor-
mation about correspondence. This large amount of data dramatically reduces
the ambiguity in the estimation of egomotion. We have presented a technique
which achieves very accurate results, even in the face of independent motion.
Despite these promising results, we suspect that most aspects of our technique
can be improved with further work. More accurate correspondence probability
distributions could be calculated by a more rigorous examination of the imaging
process. Though our simple-minded approach to maximizing ρ(E) works well in
practice, it would be better to have a technique with more rigorous performance
bounds. Future work could also extend this framework to other problems, such
as explicitly identifying which portions of the scene are independently moving.
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Abstract. Estimating the pose of an imaging sensor is a central research
problem. Many solutions have been proposed for the case of a rigid en-
vironment. In contrast, we tackle the case of a non-rigid environment
observed by a 3D sensor, which has been neglected in the literature. We
represent the environment as sets of time-varying 3D points explained by
a low-rank shape model, that we derive in its implicit and explicit forms.
The parameters of this model are learnt from data gathered by the 3D
sensor. We propose a learning algorithm based on minimal 3D non-rigid
tensors that we introduce. This is followed by a Maximum Likelihood
nonlinear refinement performed in a bundle adjustment manner. Given
the learnt environment model, we compute the pose of the 3D sensor, as
well as the deformations of the environment, that is, the non-rigid coun-
terpart of pose, from new sets of 3D points. We validate our environment
learning and pose estimation modules on simulated and real data.

1 Introduction

Aligning 3D views – sets of 3D points – gathered by a 3D sensor, such as a
calibrated stereo rig, is important for constructing comprehensive 3D models of
the environment or updating the position of a mobile imaging sensor. When the
environment is rigid, the 3D views are related by rigid Euclidean transforma-
tions. Many approaches have been proposed to compute these transformations,
e.g. [6]. Aligning 3D views is one of the building blocks of hierarchical approaches
to Structure-From-Motion. However, the assumption of rigidity is violated in
many cases of interest, for instance a garment deforming as a person moves. The
alignment problem is then particularly challenging because a different shape is
observed in each 3D view.

A large body of work has been done in the medical imaging community but
with the aim of estimating dense deformation fields from dense, often voxel-
based, reconstructions. Dealing with non-rigid scenes coming from single-camera
footage has received an increasing attention over the last few years. The prob-
lem is highly challenging since both the cameras and the non-rigid shape have
to be recovered. A major step forwards for such cases was made by Bregler
et al. [4,8] and Brand [3]. Building on the work of [2,7], they developed and
demonstrated factorization of images of non-rigid scenes, where the non-rigidity
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was represented as a linear combination of basis shapes. It is shown in [5] how
the constraints coming from two synchronized cameras can be incorporated into
non-rigid factorization.

We tackle the problem of computing the pose of a 3D sensor with respect to a
non-rigid scene, that we represent using the low-rank shape model used in non-
rigid factorization methods. Most previous work, e.g. [2,3,4,5,8,10] use the weak
perspective camera model. In contrast, we do not specify a camera model, since
we directly consider 3D views. We assume that spatial and temporal point cor-
respondences are established. Pose estimation in a non-rigid environment raises
two main problems. First, one has to define the meaning of non-rigid pose. One
benefit of using the low-rank shape model is that the ‘true’ camera pose is re-
covered. Second, contrarily to classical model-based pose estimation in a rigid
environment, a prior model of the non-rigid environment is not available in many
cases. We propose to learn this model from a collection of unregistered 3D views
gathered by the 3D sensor. Once this learning stage has been passed, our non-
rigid pose estimator can be launched.

We bring the following contributions. First, §3, we state the implicit and
explicit low-rank shape models, and state the notion of pose in this context.
Second, §4, we propose algorithms to learn the non-rigid environment. The im-
plicit model parameters are learnt using a factorization technique, while for the
explicit model, we use what we call minimal 3D non-rigid tensors. Third, §5, we
show how the pose of the 3D sensor can be computed with respect to the learnt
model while the environment is moving and deforming. Experimental results on
simulated and real data are reported in §6. A discussion is provided in §7.

2 Notation

Matrices are written in sans-serif fonts, e.g. R, and vectors using bold fonts, e.g.
x. The n 3D views are sets of m points denoted Qtj , where t is the time index
and j the point index. We do not use homogeneous coordinates, e.g. Qtj is a
3-vector. The identity matrix of size (s × s) is written I(s), the zero matrix 0
and the zero vector 0. We use I for the (3 × 3) identity matrix. The Kronecker
product is written ⊗, matrix Frobenius norm as ‖ · ‖ and the Moore-Penrose
pseudo-inverse as †.

3 Non-rigid Shape and Pose

3.1 Non-rigid Shape

We describe the low-rank non-rigid shape model. The pose of the 3D sensor is
modeled by 3D Euclidean transformations {(Rt,yt)} with Rt an orthonormal
matrix and yt ∈ R

3 such that Q̂tj = RtQ̃tj + yt. The {Q̃tj} form a motionless
version of the 3D views, i.e. that do not undergo any ‘global motion’, but are
deforming through time. The low-rank shape model represents the {Q̃tj} as

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Estimating the Pose of a 3D Sensor in a Non-rigid Environment 245

linear combinations of l basis shapes {Bkj}: Q̃tj =
∑l

k=1 ξtkBkj . The time-
varying {ξtk} are the configuration weights. Introducing the {(Rt,yt)}, we obtain
the explicit model:

Q̂tj = Rt

(
l∑

k=1

ξtkBkj

)
+ yt (1)

= MtBj + yt with (2)
Mt = Rt

(
ξt1I · · · ξtlI

)
. (3)

We call Mt a (3 × r) explicit non-rigid motion matrix and Bj =
(
BT

1j · · · BT
lj

)
a

(r×1) non-rigid basis shape vector. Parameter r = 3l is the rank of the model. For
reasons that are made clearer below, we derive a bilinear implicit model. Let A be
a (3l×3l) rank-3l matrix. It is seen that Q̂tj = MtBj +yt = (MtA−1)(ABj)+yt,
yielding:

Q̂tj = NtSj + yt, (4)

with Nt = MtA−1 and Sj = ABj . We call Nt and Sj the implicit non-rigid
motion matrix and shape vector, and A a corrective transformation matrix.

3.2 Non-rigid Pose

Pose in a non-rigid environment has a rigid and a non-rigid counterpart. The
rigid part {(Rt,yt)} represents the ‘global’ motion of the environment relative
to the sensor. It gives the ‘true’ relative sensor displacement. In contrast, the
non-rigid part only concerns the environment, and not the imaging sensor. In
the above-described model, it is represented by the configuration weights {ξtk},
giving the intrinsic, i.e. motionless, deformations of the environment at each
time instant. The motionless and deformationless environment is modeled by
the basis shapes {Bkj}.

The implicit model is useless for pose estimation: it can be seen as an ‘un-
calibrated’ model of the environment. However, its ML (Maximum Likelihood)
Estimate can be computed very reliably, as will be seen in the next section.

4 Learning the Environment

Given a collection of 3D views, we learn the environment by estimating the para-
meters of the low-rank shape model. Note that only the basis shapes {Bkj} are
subsequently used for pose estimation, see §5. However, to get an ML Estimate,
all parameters of the model must be computed.

We state the ML residual error and show how to compute the translations. We
first tackle the case of the implicit model and then the explicit one. We assume
all points to be visible in all 3D views.
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4.1 Maximum Likelihood Residual Error

Assuming that the error on the 3D points is Gaussian, centred and i.i.d., the
ML residual error is:

D2 =
1

nm

n∑
t=1

m∑
j=1

d2(Q̂tj ,Qtj), (5)

where d2(X,Y) = ‖X − Y‖2 is the Euclidean distance measure and {Q̂tj} are
corrected points, exactly explained by the non-rigid shape model.

4.2 Computing the Translations

We show that the translations yt can be eliminated prior to estimating the
other parameters. By substituting equation (1) or equation (4) in the residual
error (5) and nullifying its partial derivatives with respect to yt, we obtain
yt = 1

m

(∑m
j=1 Qtj − Q̂tj

)
. The origin of the r-dimensional space containing

the non-rigid shape vectors is arbitrary and is chosen such that
∑m

j=1 Sj = 0 in
the implicit case and

∑m
j=1 Bj = 0 in the explicit case, giving for the translation

yt the centroid yt = 1
m

∑m
j=1 Qtj = Q̄t of the t-th 3D view. This means that

one cancels the translations out by centring each set of 3D points on its centroid:
Qtj ← Qtj − Q̄t. Henceforth, we assume that this has been done.

4.3 Shape Learning with the Implicit Model

We consider the implicit non-rigid shape model of equation (4). We factorize the
3D views {Qtj} into implicit non-rigid motion matrices {Nt} and shape vectors
{Sj}. The problem is to minimize the ML residual error (5) over the {Q̂tj} such
that Q̂tj = NtSj . Rewrite (5) as D2 ∝ ‖Q̂ − Q‖2 where Q is the (3n × m)
measurement matrix:

Q =

⎛
⎜⎝

Q11 · · · Q1m

...
. . .

...
Qn1 · · · Qnm

⎞
⎟⎠ ,

and Q̂ is defined by the implicit (3n × 3l) ‘non-rigid joint motion matrix’ N
and the (3l × m) ‘non-rigid joint structure matrix’ S as Q̂ = NS with NT =(
NT

1 · · · NT
n

)
and S =

(
S1 · · · Sm

)
. Since N has 3l columns and S has 3l rows,

Q̂ has maximum rank 3l. The problem is to find the closest rank-3l matrix Q̂ to
Q. Let Q = UΣVT be a Singular Value Decomposition (svd) of matrix Q where
U and V are orthonormal matrices and Σ is diagonal and contains the singular
values of Q. Let Σ = ΣuΣv be any decomposition of Σ, e.g. Σu = Σv =

√
Σ. The

non-rigid joint motion and structure matrices are obtained by, loosely speaking,
‘truncating’ the decomposition by nullifying all but the 3l largest singular values,
which leads, assuming the singular values in decreasing order in Σ, to N =
ψ3l(UΣu) and S = ψT

3l(VΣT
v ), where ψc(W) is formed with the c leading columns

of matrix W.
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4.4 Shape Learning with the Explicit Model

The aim is to compute the ML Estimate of the configuration weights, rotation
matrices and non-rigid structure in equation (1) by minimizing the residual error
(5). This is a nonlinear problem for which two approaches have been followed
in the non-rigid factorization litterature. On the one hand Bregler et al. [4],
Brand [3], Aanaes et al. [1], Del Bue et al. [5] and Xiao et al. [10] compute
a matrix A that upgrades the implicit motion matrix N so that the metric
constraints of the explicit model are enforced. Xiao et al. show that in order
to get the correct solution, two types of metric constraints must be taken into
account: the rotation constraints and the basis constraints, from which they
derive a closed-form solution for matrix A.

On the other hand, Torresani et al. [8] directly learn the parameters of the
explicit model. They propose a comprehensive system based on a generalized EM
(Expectation Maximization) algorithm. An important, still unsolved problem is
to find a suitable initialization, since EM performs local optimization only.

Our solution lies in the second category: a suboptimal initialization is com-
puted and subsequently refined in a bundle adjustment manner. These two steps
are presented below, followed by an analysis of the ambiguities of the solution.

Initializing
The rotations. Brand proposes a solution based on upgrading the implicit motion
matrices [3], which requires at least n ≥ l(9l+3)

4 3D views to compute a corrective
transformation and is thus not feasible for many practical cases. For example, at
least 39 views giving independent constraints are necessary to use this method
with the sequence presented in §6.2. In [5], the authors compute a block-diagonal
corrective transformation matrix. Another solution used in [1] is to assume that
the environment has a sufficiently strong rigid component, and to estimate the
rotation using a standard procedure such as [6]. This approach is not feasible
for highly deforming environments.

In contrast, we propose an approach taking the non-rigid nature of the en-
vironment into account. Our algorithm is presented below in the occlusion-free
case for simplicity, but can be easily extended to the missing data case. Consider
the explicit non-rigid joint motion equation Q = MB with:

M =

(
ξ11R1 ··· ξ1lR1

...
. ..

...
ξn1Rn ··· ξnlRn

)
and B =

(
B11 ··· B1m

...
. . .

...
Bl1 ··· Blm

)
.

Define two subsets A and B of na and nb 3D views respectively, Qa = MaB
and Qb = MbB. Our goal is to eliminate the structure B from the equations.
We assume without loss of generality rank(Qb) ≥ 3l. This implies nb ≥ l. We
express B in terms of Qb and Mb using the equation subset B as B = M†

bQb.
Plugging this into the equation subset A yields Qa = MaB = MaM†

bQb that
we rewrite: (

I(3na) −(MaM†
b)

)
︸ ︷︷ ︸

Z

Qab = 0(3na×m) (6)
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where nab = na +nb and QT
ab = (QT

a QT
b ). We call matrix Z(3na×3nab) a 3D non-

rigid tensor. Let us examine more closely the expression of MaM†
b. The joint

motion matrix can be rewritten as M = R(Ξ⊗ I) where R = diag(R1, . . . , Rn) is
an orthonormal matrix and Ξ is an (n×l) matrix containing the {ξik}. Similarly,
Ma = Ra(Ξa ⊗ I) and Mb = Rb(Ξb ⊗ I), yielding:

MaM†
b = Ra(Ξa ⊗ I)(Rb(Ξb ⊗ I))† = Ra(Ξa ⊗ I)((Ξb ⊗ I))†RT

b ,

since Rb is an orthonormal matrix. We make use of the following properties:
(S ⊗ I)† = S† ⊗ I and (S ⊗ I)(S′ ⊗ I) = (SS′) ⊗ I to get:

MaM†
b = Ra

(
(ΞaΞ†

b) ⊗ I
)

RT
b .

Substituting in equation (6) and multiplying on the left by the orthonormal RT
a

yields: (
RT

a −
(
(ΞaΞ†

b) ⊗ I
)

RT
b

)
Qab = 0(3na×m). (7)

From this equation, knowing Ra and using the orthonormality constraints on
Rb to eliminate the weights ΞaΞ†

b should allow to compute Rb. We use the fact
that the coordinate frame can be aligned on a reference view t, i.e. such that
Rt = I and choose one view in the initial set of 3D views A to be the reference
one.

The first idea that comes to mind to solve this problem is to consider the left
nullspace of Qab. Define a (3nab × (3nab −3l)) matrix U whose columns span the
left nullspace of Qab: UTQab = 0. Using equation (7), we obtain:

(
RT

a −
(
(ΞaΞ†

b) ⊗ I
)

RT
b

)
= HUT,

where H accounts for the fact that any linear combination of the columns of U
are in the left nullspace of Qab. While this approach works fine in the absence
of noise contaminating the data, it is however very unstable and useless when
even very slight noise is present in the data. Indeed, if one employs e.g. svd to
compute matrix U, then the singular vectors corresponding to the lowest singular
values will be selected, and will not in general allow to recover the sought-after
rotations, since the svd mixes the singular vectors to obtain the lowest residual
error as possible.

The second idea that comes to mind is to estimate each rotation in B and the
corresponding weight at a time. Consider a 3D view g ∈ A. Equation (7) induces
the following residual error:

m∑
j=1

‖RT
g Qgj −

∑
t∈B

ζtRT
t Qtj‖2, (8)

where {ζt} are unknown weights. Initialize all rotations in Rb to the identity:
R0

t = I, t ∈ B. Let p ← 0 be the iteration counter. The idea is to iteratively
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compute the t-th rotation for t ∈ B while holding the other nb − 1 rotations in
B until convergence, by minimizing the residual error (8) that we rewrite:

m∑
j=1

‖Ep
j − ζp+1

t

(
Rp+1

t

)T
Qtj‖2 (9)

with:

Ep
j = RT

g Qgj −
(∑

t∈B

(Sp
t )

TQtj

)
, (10)

where Sp
t is the latest estimate, i.e. :

Sp
t =

{
ζp+1
t Rp+1

t if it is computed
ζp
t Rp

t otherwise.

We use a standard procedure for computing the 3D rotation and scale from 3D
point correspondences – here {Ep

j ↔ Qij} – due to [6] to solve this problem.
Our algorithm is summarized in table 1. Note that at most l rotations in Rb

can be computed at each iteration which implies that the number of rotations in
Rb must be l. This is why only the smallest, i.e. minimal 3D non-rigid tensors
can be used by our algorithm. Also, the unknown Mb must be full-rank. We use
the corresponding implicit Nb to check that this is the case, since there exists a
full-rank corrective transformation matrix A such that NaA = Ma. In the case
of missing data, the sum in equations (8) and (9) is simply replaced by a sum
over the points seen in subsets A and B.

The configuration weights and non-rigid structure. Consider the ML residual
error (5) that we rewrite below for convenience:

D2 =
1

nm

n∑
t=1

m∑
j=1

‖Qtj − Rt

(
l∑

k=1

ξtkBkj

)
‖2.

Let Q̃tj = RT
t Qtj be a motionless version of the 3D points, the residual error

transforms in:

D2 =
1

nm

n∑
t=1

m∑
j=1

‖Q̃tj −
(

l∑
k=1

ξtkBkj

)
‖2.

Introduce matrices L(n×3m) and T(l×3m) which are obtained by reorganizing Q̃
and B, respectively:

L̃ =

⎛
⎝ Q̃T

11 ··· Q̃T
1m

...
.. .

...
Q̃T

n1 ··· Q̃T
nm

⎞
⎠ and T =

⎛
⎝ BT

11 ··· BT
1m

...
. . .

...
BT

l1 ··· BT
lm

⎞
⎠ .

The residual error is rewritten D2 = 1
nm‖L̃ − ΞT ‖2. This means that matrix L̃

has rank l at most. Similarly to §4.3, let L̃ = UΣVT be an svd of matrix L̃, we
get Ξ = ψl(UΣu) and T = ψT

l (VΣT
v ).
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Table 1. The proposed initialization algorithm for the explicit model parameters

Objective

Given n 3D views {Qtj} of m corresponding points and the rank 3l of the non-rigid
model, compute the relative pose {(Rt, yt)} of the 3D sensor, the non-rigid pose of the
environment, i.e. the configuration weights {ξtk}, while learning the low-rank non-rigid
shape model {Bkj}.

Algorithm

1. Set initial equation sets. A is any 3D view t, B is any l 3D views at least one
of them not in A and such that Nb is full-rank, Rt ← I and Ra ← I.

2. Compute the rotations:
(a) Set initial rotations R0

t ← I, t ∈ B and the iteration counter p ← 0.
(b) For t ∈ B: form the {Ep

j }, equation (10). Compute Rp+1
t by minimizing (9),

see Horn et al. [6].
(c) p ← p + 1.
(d) If the decrease in the residual error is smaller than ε, go to step 3 else go to

step b.
3. Test convergence. If all rotations are computed, stop.
4. Update equation sets. A ← A ∪ B and B is any l 3D views, at least one of them

not in A and such that Nb is full-rank.
5. Iterate. go to step 2.

Bundle Adjustment. Starting from the above-derived initial solution, we
minimize the ML residual error (5) using nonlinear least-squares in a bundle
adjustment manner, see e.g. [9]. We use the Levenberg-Marquardt algorithm,
implemented to exploit the sparse block structure of the Jacobian and (Gauss-
Newton approximation of) the Hessian matrices. Bundle adjustment in the non-
rigid case is developed in [1,5], where the authors show that compared to the
rigid case, additional ‘gauge freedoms’ in the recovered structure and motion
must be handled. However, the Levenberg-Marquardt optimization engine deals
with those by damping the approximated Hessian matrix which makes it full
rank. We found that the regularization term employed in [5] does not have a
significant effect on the results we obtained. This is mainly due to the fact that
we directly use 3D data, while [5] use image points.

Ambiguities of the Solution. The ambiguity of the solution demonstrated by
Xiao et al. [10] in the 2D case when only the rotation constraints are used does
not hold for our algorithm. The reason is that it enforces the replicated block
structure of the joint motion matrix M, which provides stronger constraints
than the rotation constraints only. The ambiguity matrix E on the learnt model
is E = diagl(R)(Λ(l×l) ⊗ I), where diagl(R) is a l block diagonal matrix for some
3D rotation matrix R, representing the indeterminateness of the orientation for
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the global coordinate frame. Matrix Λ(l×l) ⊗ I models linear combinations of the
basis shapes. This shows that it is not possible to recover the ‘true’ basis shapes
and configuration weights, but that ‘true’ camera pose can still be computed.
The proof of this result is omitted due to lack of space.

5 Computing Pose

Given the non-rigid model of the environment – the basis shapes {Bkj} – and
a 3D view {Qj}, we want to estimate the pose of the 3D sensor, namely the
Euclidean transformation (R,y), jointly with the non-rigid counterpart of the
pose, i.e. the configuration weights {ξk}. Note that we drop index t since only
one 3D view is considered in this section. It is not necessary to observe all points
used in the learning phase to compute pose. The ML residual error is:

C2 =
1
m

m∑
j=1

d2(MBj + y,Qj). (11)

It must be minimized over (R,y) and {ξk}. Matrix M is defined by equation (3).
We propose to nonlinearly minimize the ML residual error (11) using the

Levenberg-Marquardt algorithm. It is not possible to use a direct estimator as
[6] due to the configuration weights. Note that, as shown below, the translation
y can be eliminated from the equation. The minimization is thus performed over
R and {ξk}. Such an algorithm as Levenberg-Marquardt requires one to provide
an initial solution. Our algorithm for finding it is described below.

Eliminating the translation. The derivatives of the ML residual error (11) with
respect to y must vanish: ∂C2

∂y = 0, which leads to y = 1
m

∑m
j=1 (Qj − MBj). This

result means that y is given by the difference between the centroid of the points
{Qj} and the centroid predicted by the points from the shape model {MBj},
which vanishes if the set of points used for computing the pose is exactly the
same as the one used in the learning phase. In any case, by centring the points
on their centroid, the translation vanishes. Henceforth, we assume this has been
done and rewrite the ML residual error (11) as:

C2 =
1
m

m∑
j=1

d2(MBj ,Qj). (12)

Initializing the rotation and configuration weights. We linearly compute a
motion matrix M̃ without enforcing the correct replicated structure by
minM̃

∑m
j=1 d2(M̃Bj ,Qj), which yield:

M̃ =
(
Q1 · · · Qm

) (
B1 · · · Bm

)†
.
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We extract the {ξk} and R from M̃ by solving minR,{ξk}
∑l

k=1 ‖M̃k − ξkR‖2,
where the M̃k are (3 × 3) blocks from M̃. By vectorizing and reorganizing the
residual error, we obtain:

‖

⎛
⎜⎝

vectT(M̃1)
...

vectT(M̃l)

⎞
⎟⎠

︸ ︷︷ ︸
Λ

−

⎛
⎜⎝

ξ1
...
ξl

⎞
⎟⎠

︸ ︷︷ ︸
ξ

vectT(R̃)︸ ︷︷ ︸
r̃

‖2,

which is a rank-1 approximation problem that we solve by ‘truncating’ the svd

Λ = UΣVT, as in §4.3: ξ = ψ1(UΣ) and r̃ = ψT
1 (V). Note that ‖r̃‖ = ‖R̃‖ = 1.

Matrix R̃ must be subsequently corrected to give R by enforcing the orthonormal-
ity constraints. This is done by finding the closest orthonormal matrix to R̃ using
svd, see [6]: R̃ = UΣVT gives R = 1

3 tr(Σ) det(U) det(V)UVT, while compensating
the possible sign change by ξ ← det(U) det(V)ξ.

6 Experimental Evaluation

6.1 Simulated Data

We report experimental results on simulated data. The default simulation setup
consists of n = 15 time-varying 3D views, each containing m = 35 points. They
are generated by randomly drawn linear combinations of l = 3 basis shapes, all of
them lying in a sphere with unit radius. An additive, zero-mean Gaussian noise
with variance σ = 0.01 (i.e. 1% of the scene scale) is added to the 3D points.
We vary each of these parameters in turn. We average the error measures over
100 trials. The true number of basis shapes is used by the algorithms.
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Fig. 1. (a) ML residual error against the level of added noise and (b) pose error against
the number of basis shapes
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Environment learning. We observe on figure 1 (a) that the ML residual error
is very close to σ. The implicit learning Imp consistently gives a significantly
lower residual error than the explicit learning algorithms Exp�. This means
that, despite the fact that the data were generated using the explicit low-rank
shape model, the extra degrees of freedom of the implicit model represent quite
well the added Gaussian noise.

We observe that the difference between the three explicit learning methods is
small compared to the difference with Imp. ExpLM (from §4.4, ‘LM’ stands for
Levenberg-Marquardt) always performs better than ExpInitIter (from table
1), which always performs better than ExpInitMean (based on [6] to get the
rotations). This means that the residual error (8), which is minimized by Ex-

pInitIter while estimating the minimal 3D non-rigid tensors, is well-adapted
to our problem.

Figure 1 (b) compares the error raised by the rotation part of the pose, in
degrees, between our non-rigid algorithms and rigid SFM and pose algorithms,
respectively dubbed RigExpLM and RigPoseLM. We observe that the pro-
posed ExpLM gives errors independent of the number of basis shapes, while, as
could have been expected, RigExpLM rapidly degrades as the number of basis
shapes grows.

Pose computation. Figure 1 (a) shows that all pose algorithms Pose� consis-
tently give a higher residual error than the explicit learning algorithms. This is
explained by the fact that pose estimation suffers from the errors in the learnt
model and in the 3D view. PoseInit gives quite high errors, roughly 5σ, while
PoseLM converges to roughly 1.5σ which is reasonable. The same remarks as
for the learning algorithms can be made in the case of pose, for figure 1 (b).

Another experiment was intended to assess to which extent, reliable pose
estimate can be obtained when the environment is deforming in a very different
way compared to the learning stage. Let ν be the mean value of the configuration
weights. We alter them by adding randomly drawn perturbations with increasing
magnitude μ, and generate a 3D view with these parameters, from which pose
is estimated. Obviously, the results depend on the simulation setup, the number
of points, views, basis shapes and the level of noise. However, we observe that
for μ ≤ 1.3ν, the residual error indicates that the pose estimate is reasonable for
most configurations. For μ > 1.3ν, the pose estimate rapidly degrades.

6.2 Real Data

We tested our algorithms on sets of 3D points reconstructed from a calibrated
stereo rig. The sequence consists of n = 650 pairs of views. The m = 30 point
tracks were obtained semi-automatically and reconstruction was performed using
ML triangulation, i.e. by minimizing the reprojection error. The reprojection
error we obtained is 4.7276 pixels, which is rather large and explained by the
low quality of the manually entered point tracks.

We used a subset of the full sequence, made of 1 3D view over 25 from 1 to
551, that is 23 3D views, for learning the environment. The remaining 3D views
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Fig. 2. (a) The first (circles) and the second (crosses) basis shapes. (b) Zoom on one
of the original images: the circles are the tracks, the diamonds are the reprojections
from pairwise Structure-From-Motion, the squares are the reprojections from our non-
rigid shape model, and the triangles are the reprojections from a rigid shape model.
(c) The path representing the translation part of the pose, together with the images
corresponding to the 3D views used for learning the environment, indicated by white
dots at the corner of the images. The ‘interpolated’ positions are shown using a bold
line.

Fig. 3. One out of the 650 stereo pairs used in the experiments, overlaid with the 30
point tracks

are registered by computing pose. For views 1 < i < 551, this can be viewed as
‘interpolation’ since the surrounding 3D views are used for learning the environ-
ment, while for views 551 < i < 650 this can be viewed as an ‘extrapolation’ of
the model since new pose and deformations are seen in these views.

An important aspect is the choice of the number l of basis shapes. If l is
too low, the model is not able to represent all the possible deformations, while
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Fig. 4. (a) ML residual error and (b) 2D reprojection error versus the number of basis
shapes

if l is too high, the noise is modeled, resulting in unreliable pose estimates in
both cases. We propose to manually choose l by examining the graphs shown on
figure 4. It shows the ML residual errors and the reprojection errors, i.e. the Sum
of Squared Differences between measured and predicted image points, resulting
of the learning algorithms for different numbers of basis shapes. We observe
that the 3D ML residual error and the 2D reprojection error decrease while l
increases, the former towards 0 and the latter towards the reconstruction error,
shown by an horizontal line ‘SFM’ on the graph, which was expected. Based
on this graph, we choose l = 4, for which the ExpLM ML residual error is
5.32 centimeters and the 2D reprojection error is 4.7922 pixels. For comparison,
a rigid environment model gives a 23.58 centimeters ML residual error and a
5.7605 pixels 2D reprojection error. It is important to note that for l = 5 and
l = 6 basis shapes, very similar pose estimates are subsequently obtained.

Figure 2 (c) shows the learnt path, together with some key images. This
result appears visually satisfying, Note that this is only intended to let the
reader figure out the experimental conditions since we observed that the path,
in other words the translation part of the pose {yt}, is very similar between
the rigid and the non-rigid models, the mean difference being smaller than a
centimeter. However, the mean difference in the rotations is 2.81 degrees, which
is significant, but difficult to illustrate visually. The mean ML residual errors
are 8.66 and 12.83 centimeters for the ‘(a) The first (circles) and the second
(crosses) basis shapes. (b) Zoom on one of the original images: the circles are
the tracks, the diamonds are the reprojections from pairwise Structure-From-
Motion, the squares are the reprojections from our non-rigid shape model, and
the triangles are the reprojections from a rigid shape model.interpolated’ and
the ‘extrapolated’ poses respectively.

Figure 2 (a) shows the two first basis shapes that were learnt. We observe
that the deformation is significant.
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Finally, figure 2 (b) shows a zoom on points reprojected in an image from
different models. We clearly see that the non-rigid shape model fits the data
much better than a rigid shape model.

The computation time for the learning phase is of the order of a minute while
pose estimation is roughly a tenth of a second.

7 Discussion

One weakness of the approach is to rely on 3D point correspondences. We are
currently working on using more robust types of inputs, such as contours or
image patches, that can be reliably tracked through sequences of stereo pairs
using e.g. particule filtering techniques. This is intended to be part of an iterative
deforming environment learning system. Essential issues that will be dealt with
are assessing what kind of deformations can be represented by the low-rank
shape model and choosing the number of basis shapes, which will be examined
in the framework of model selection.
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Abstract. The recovery of 3D shape and camera motion for non-rigid
scenes from single-camera video footage is a very important problem in
computer vision. The low-rank shape model consists in regarding the
deformations as linear combinations of basis shapes. Most algorithms
for reconstructing the parameters of this model along with camera mo-
tion are based on three main steps. Given point tracks and the rank, or
equivalently the number of basis shapes, they factorize a measurement
matrix containing all point tracks, from which the camera motion and
basis shapes are extracted and refined in a bundle adjustment manner.
There are several issues that have not been addressed yet, among which,
choosing the rank automatically and dealing with erroneous point tracks
and missing data.

We introduce theoretical and practical contributions that address these
issues. We propose an implicit imaging model for non-rigid scenes from
which we derive non-rigid matching tensors and closure constraints. We
give a non-rigid Structure-From-Motion algorithm based on computing
matching tensors over subsequences, from which the implicit cameras are
extrated. Each non-rigid matching tensor is computed, along with the rank
of the subsequence, using a robust estimator incorporating a model selec-
tion criterion that detects erroneous image points.

Preliminary experimental results on real and simulated data show that
our algorithm deals with challenging video sequences.

1 Introduction

Structure-From-Motion – the recovery of 3D shape and camera motion from
images – is one of the most studied problems in computer vision. The decades
of work has led to significant successes, especially when the observed environ-
ment is static. However, the assumption of rigidity is violated in many cases of
interest, for example expressive faces, moving cars, etc. For that reason, deal-
ing with non-rigid scenes coming from single-camera footage has received an
increasing attention over the last few years. The problem is highly challenging
since both the camera motion and the non-rigid 3D shape have to be recovered.
A major step forwards for such cases was made by Bregler et al. [5,8], Brand [4]
and Aanæs et al. [1]. Building on the work of [2,6], they developed and demon-
strated factorization of images of non-rigid scenes, where the non-rigidity was

R. Vidal, A. Heyden, and Y. Ma (Eds.): WDV 2005/2006, LNCS 4358, pp. 257–269, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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represented as a linear combination of basis shapes. Xiao et al. [12] studied the
degenerate deformations that may defeat the reconstruction algorithms.

This paper tackles the two following open problems. (i) the factorization of
a measurement matrix containing all point tracks in the presence of missing
and erroneous image points. This must be done to recover the parameters of
the implicit imaging model. Most previous work do not deal with missing data
[1,4,5,8,11]. (ii) the automatic choice of the rank r of the measurement matrix,
characterising the degree of non-rigidity in the sequence. Most previous work
rely on a user-defined rank [4,5,8,11].

More precisly, we build on the low-rank shape model to derive an implicit
imaging model projecting points affinely from R

r – the implicit shape points –
onto the images using implicit camera matrices. The rank r reflects the degree of
non-rigidity of the model and is thus a very important parameter. This implicit
model is simpler than the explicit model used in e.g. [5,8], in the sense that it
ignores the replicated block structure of the camera matrices. The implicit model
gives weaker constraints on point tracks than the explicit model. It is the model
used for non-rigid factorization in e.g. [5,8,11]. Based on this model, we derive
non-rigid matching tensors that constrain point tracks and encapsulate informa-
tion about the implicit camera matrices. We define non-rigid closure constraints
relating the matching tensors to the implicit camera matrices. These theoretical
concepts are based on the fact that implicit reconstruction is performed in R

r.
They lead to a batch algorithm for computing the motion and structure matrices
in the presence of erroneous and missing data. The idea is to robustly compute
a set of matching tensors over several subsequences using mapsac and the gric

criterion to choose the associated rank [7]. From these matching tensors, we
solve for the implicit camera matrices using the closure constraints. The next
step consists in computing the basis shapes by non-rigid triangulation. We refine
both the implicit cameras and implicit shape in a bundle adjustment manner.
Finally, each image point is classified as an inlier or an outlier. Almost all steps
in this algorithm are done robustly, meaning that blunders are detected and thus
do not corrupt the computation.

Roadmap. In §2, we derive the non-rigid shape and imaging models. We exam-
ine previous work in §3. We derive the non-rigid matching tensors and closure
constraints in §§4 and 5 respectively. Our Structure-From-Motion algorithm is
derived in §6 while the robust estimation of matching tensors and associated
ranks is given in §7. Experimental results are reported in §8 and our conclusions
in §9.

Notation. Vectors are denoted using bold fonts, e.g. x and matrices using sans-
serif or calligraphic characters, e.g. M or X . Index i = 1, . . . , n is used for the
images, j = 1, . . . , m for the points and k = 1, . . . , l for the basis shapes, e.g. xij

is the position of the j-th point track in the i-th image and Bkj is the k-th basis
shape for the j-th point. Visibility indicators modeling occlusions are denoted
vij . The Hadamard (element-wise) product is written �. The zero and one vec-
tors are respectively 0 and 1, 0 is the zero matrix and T is vector and matrix
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transpose. Bars indicate centred data, as in e.g. X̄ . Notation [i, i′] refers to a
subsequence between image i and image i′, e.g. X[i,i′] is the measurement matrix
for this subsequence. {} is a set over some variable. We use the Singular Value
Decomposition, denoted svd, e.g. X = UΣVT where U and V are orthonormal
matrices, and Σ is diagonal, containing the singular values of X in decreasing
order.

2 Non-rigid Imaging Model

2.1 Explicit Model

The low-rank shape assumption consists in writing the coordinates of a time-
varying set of points Qij as linear combinations over l basis shapes Bkj with the
configuration weights αik: Qij =

∑l
k=1 αikBkj . Points Qij are projected onto

the images by affine cameras: xij = PiQij + ti, from which the explicit imaging
model is obtained:

xij = Pi

(
l∑

k=1

αikBkj

)
+ ti. (1)

This trilinear equation is the most explicit form of the low-rank shape imaging
model. Only rank-3 basis shapes are considered for simplicity, but rank-2 and
rank-1 basis shapes can be modeled as well [12].

2.2 Implicit Model

Rewriting (1), one obtains:

xij =
(
αi1Pi · · · αilPi

) (
BT

1j · · · BT
lj

)T
+ ti

= MiSj + ti with Mi =
(
αi1Pi · · · αilPi

)
(2)

We call Mi a (2 × 3l) explicit camera matrix and ST
j =

(
BT

1j · · · BT
lj

)
a (3l × 1)

shape vector. Introduce r = 3l, the rank of the model, a (r × r) full-rank matrix
A and relaxing the replicated structure yields the bilinear implicit model. From
(2), xij = MiSj + ti =

(
MiA−1

)
(ASj) + ti, giving:

xij = JiKj + ti. (3)

We call Ji = MiA−1 and Kj = ASj the implicit camera matrix and the implicit
shape matrix respectively. Matrix A represents a corrective transformation. As
shown in the next section, this is the model used for non-rigid factorization. The
model generalizes, in some sense, the P

k → P
2 projection matrices introduced

by Wolf et al. [10].
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3 Previous Work

Most of the previous work [1,4,5,8,11] is based on factorizing a measurement
matrix using svd and hence do not cope with missing data. We note that Torre-
sani et al. [8] propose an approach where the likelihood of the explicit model is
maximized over the entire image sequence using a generalized EM (Expectation
Maximization) algorithm which finds the nearest local optimum. The impor-
tant rank selection problem is neglected in most papers, besides [1]. Below, we
describe the three main steps involved in most algorithms. The inputs are the
complete measurement matrix X and the rank r. The outputs are the camera
pose, the configuration weights and the basis shapes.

Step 1: Factorizing. A (2n × m) measurement matrix X is built by gathering
all point coordinates. The translation part of the imaging model, i.e. the ti, is
estimated as the mean of the point coordinates in each image. A (2n × 1) joint
translation vector tT = (tT

1 · · · tT
n) is built and used to centre the measurement

matrix: X̄ ← X − t · 1T, from which we get:
⎛
⎜⎝

x11 · · · x1m

...
. . .

...
xn1 · · · xnm

⎞
⎟⎠

︸ ︷︷ ︸
X̄(2n×m)

=

⎛
⎜⎝

J1
...

Jn

⎞
⎟⎠

︸ ︷︷ ︸
J(2n×r)

(
K1 · · · Km

)
︸ ︷︷ ︸

K(r×m)

,

where J and K are the joint implicit camera and shape matrices. The centred
measurement matrix is factorized using svd as X̄ = UΣVT. The joint implicit
camera and shape matrices J and K, are recovered as the r leading columns of
e.g. U and ΣVT respectively.

Step 2: Upgrading. The implicit model is upgraded to the explicit one by com-
puting a corrective transformation. Xiao et al. [11] show that constraints on
both the explicit camera and shape matrices must be considered to achieve a
unique solution, namely the ‘rotation’ and the ‘basis’ constraints. They give a
closed-form solution based on these constraints. Previous work [4,5,8] use only
the rotation constraints, leading to ambiguous solutions. For instance, Brand
[4] shows that a block-diagonal corrective transformation is a good practical
approximation. Once the replicated structure has been approximately enforced,
the rotation matrices are extracted using orthonormal decomposition. The con-
figuration weights are then recovered using the orthonormality of the rotation
matrices. Bregler et al. [5] assume that the information about each basis shape
is distributed in the appropriate column triple in the shape matrix by the ini-
tial svd, in other words that the entries off the block-diagonal of the corrective
transformation matrix are negligible. Experiments show that this assumption
restricts the cases that can be dealt with since only limited non-rigidity can be
handled. A second factorization round on the reordered weighted motion matrix
elements enforces the replicated block structure, yielding the weight factors and
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the Pi, which are upgraded to Euclidean by computing a linear transformation
as in the rigid factorization case. Aanæs et al. [1] assume that the structure
resulting from rigid factorization gives the mean non-rigid structure and camera
motion. Given the camera motion, recovering the structure is done by examining
the principal components of the estimated variance.

Step 3: Nonlinear refinement. The solution obtained so far is finely tuned in
a bundle adjustment manner by minimizing e.g. the reprojection error. The
algorithms proposed in [4,8] differ by the prior they are using to regularize the
solution. These priors state that the reconstructed shapes should not vary too
much between consecutive images.

4 Non-rigid Matching Tensors

Matching tensors are known for the rigid case. Examples are the fundamental
matrix and the trifocal tensor. They relate the image position of corresponding
points over multiple images. The implicit imaging model allows us to derive
matching tensors for non-rigid scenes.

A non-rigid matching tensor is a matrix N whose columns span the d dimen-
sional nullspace of the (2n × m) centred measurement matrix X̄ :

NTX̄ = 0. (4)

The size of matrix N is (2n×d) where the tensor dimension is d = 2n−r. Loosely
speaking, N constrain each point track x̄j – the j-th column of X̄ – by NTx̄j = 0.
These constraints easily extend to the non centred measurement matrix X by

substituting X̄ = X − t · 1T into equation (4):
(
NT −NTt

) (
X
1T

)
= 0.

Minimal number of points and views. The three following parameters are char-
acteristic of an image sequence: the number of images n, the number of point
tracks m and the rank r. They can be related to each other, in particular for,
given r, deriving what the minimal number of point tracks and views are for
computing the matching tensor. The computation is possible if the (2n × m)
centred measurement matrix X̄ is at least of size (r × r). Counting the point
track needed to compute the translations for centring the measurement matrix,
we directly get the minimal number of point tracks as m ≥ r + 1. From 2n ≥ r,
we obtain the minimal number of views as n ≥ � r

2� + 1. These numbers can also
be derived by counting the number of degrees of freedom in the tensor and the
number of independent constraints given by equation (4).

5 Non-rigid Closure Constraints

The closure constraints introducted by Triggs in [9] relate matching tensors to
projection matrices. These constraints are used to derive a batch Structure-
From-Motion algorithm dealing with high amounts of missing data.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



262 A. Bartoli and S.I. Olsen

In this section, we derive new types of closure constraints for the non-rigid
case, based on the above-derived matching tensors, namely the N -closure. Our
derivation is valid for any rank r.

Let K ∈ R
r be an implicit shape point. We project K in the images using

the joint implicit camera matrix J : x̄ = J K, ∀K ∈ R
r. From the definition (4)

of the matching tensors, NTx̄ = 0. Substituting the joint projection equation
yields NTJ K = 0, ∀K ∈ R

r, which gives the N -closure constraint:

NTJ = 0. (5)

This constraint means that the joint implicit camera matrix lies in the right
nullspace of NT.

6 Non-rigid Structure-From-Motion

Our batch algorithm for implicit non-rigid Structure-From-Motion is based on
the above-derived non-rigid matching tensors and closure constraints. It is sum-
marized in table 1. We consider only sets of consecutive images for simplicity. It

Table 1. Summary of our non-rigid implicit Structure-From-Motion algorithm

Objective

Given m point tracks over n images as a an incomplete (2n × m) measurement matrix
X and a (n × m) visibility matrix V, compute the implicit non-rigid cameras Ji, the
non-rigid shape points Kj and the rank r.

Algorithm

1. Partition the sequence, see §6.1 while robustly computing the matching tensors
{N[ib,i′

b
]} and associated ranks, see §7.2.

2. Solve for the implicit cameras (Ji, ti) using the closure constraints, see §6.2.
3. Triangulate the point tracks to get the implicit shape points Kj , see §6.3.
4. Nonlinearly refine the implicit cameras and shape points by minimizing the repro-

jection error, see §6.4.
5. Classify each image point track as an inlier or an outlier.

begins by selecting a set of s subsequences {[ib, i′b]}b=s
b=1 and by computing a set

of matching tensors {N[ib,i′
b]}, one for each subsequence, and the associated rank

estimates {r[ib,i′
b]}. Our joint tensor and rank estimation algorithm is presented

in §7. The full sequence rank r is the maximum over all subsequence ranks:
r = maxb(r[ib,ib]).

6.1 Partitioning the Sequence

The measurement matrix is partitioned into overlapping blocks with points visi-
ble in all of the selected images. Before going into further details, we must figure
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out what the minimal tensor dimension is, and how many views each tensor
should operate on. Let [ib, i′b] and [ib+1, i

′
b+1] be two consecutive subsequences

and let δb,b+1 = ib+1 − ib be the offset between them. We need to determine
what the maximum value of δb,b+1 is. The b-th matching tensor, with dimension
db = 2nb − rb, gives db constraints. The number of unknowns constrained by the
first matching tensor only is δ1,2, from which we get δ1,2 ≤ n1 − � r1+1

2 �. Making
the same reasoning for the b-th tensor, i.e. ignoring the constraints coming from
previous overlapping sets, gives a bound on δb,b+1:

δb,b+1 ≤ nb − �rb + 1
2

�. (6)

Taking into account the other constraints lead to a tighter bound on δb,b+1,
but requires a cumbersome formalism to count the number of constraints and
unknowns. Requiring δb,b+1 > 0 gives the minimal size of each image set as:

nb ≥ �rb + 1
2

� + 1. (7)

For instance, for a 2D rigid scene, i.e. r = 2, the minimal nb is 2 from equation
(7) and the maximal δb,b+1 is 1 from equation (6), i.e. using the affine transfor-
mations over pairs of consecutive views is fine. For a 3D rigid scene, i.e. r = 3,
the minimal nb is 3 and the maximal δb,b+1 is 1, meaning that using trifocal
tensors over triplets of consecutive of views is fine1.

In practice, we do not know the ranks rb at this step. We tune an initial guess
while jointly partitioning the sequence and computing the matching tensors, as
described in §7.2.

6.2 Solving for the Implicit Cameras

The leading part. We solve for the non-rigid cameras using the closure con-
straints. Equation (5) gives the following constraints on the joint camera matrix
J :

(
0(db×2(ib−1)) NT

[ib,i′
b]

0(db×2(n−i′
b
))

)
J = 0. Stacking the constraints for all

{[ib, i′b]}b=s
b=1 yields an homogeneous system AJ = 0. It must be solved, e.g. in

the least-squares sense, while ensuring that matrix J has full column rank:
minJ ‖AJ ‖2 s.t. det(J ) �= 0. We replace the full column rank constraint by a
column orthonormality constraint, i.e. J TJ = I(r×r). Note that the latter im-
plies the former. This is done without loss of generality since for any full column
rank joint camera matrix J , there exist several coordinate transformations, say
G(r×r), such that J G is column orthonormal. One such a transformation is given
by the qr decomposition of J = J ′G−1. The transformed problem is solved by
using the svd A = UΣVT. Matrix J is given by the r last columns of V. Note
that matrix A typically has a band-diagonal shape that one might exploit to
efficiently compute its singular vectors, see e.g. [3].

1 Triggs [9] states this result and shows the equivalence of using pairs of fundamental
matrices over triplets of consecutive views.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



264 A. Bartoli and S.I. Olsen

The translations. The implicit imaging model (3) is xij = JiKj + ti. By mini-
mizing a least-squares error over all image points, the translations ti in the joint
translation vector t, along with the basis shape vectors Kj can be reconstructed.
We prefer to postpone the basis shape vector reconstruction to the next step,
for robustness purposes. Instead, we consider the translation estimate y[i,i′] for
each subsequence [i, i′], giving the centroid with respect to the points visible in
the subsequence. We reconstruct these centroids along with vector t. Note that
in the absence of missing data, these centroids coincide. We minimize the repro-
jection error

∑s
b=1 ‖y[ib,i′

b
] − J[ib,i′

b
]Y[ib,i′

b
] − t[ib,i′

b
]‖2, where J[i,i′] and t[i,i′] are

respectively a partial joint projection matrix and a partial joint translation vec-
tor restricted to the subsequence [i, i′], and Y[i,i′] is the reconstructed centroid.
By expanding the cost function, the reprojection error is rewritten ‖Aw − b‖2,
where the unknown vector w contains the Y[ib,i′

b] and t. The solution is given
by using the pseudo-inverse of matrix A, as w = A†b. One must use a pseudo-
inverse, since there is a r-dimensional ambiguity, making A rank deficient with
a left nullspace of dimension r. This is a translational ambiguity between the
basis shapes and the joint translation t, that one can see by considering that
∀γ ∈ R

r, xj = JKj + t = J (Kj − γ) + J γ + t = J K′
j + t′, with K′

j = Kj − γ
and t′ = J γ + t.

6.3 Reconstructing the Implicit Shape Points

We compute the basis shape vectors by non-rigid triangulation. This is done
by minimizing the reprojection error. Assume that the j-th point is visible in
the subsequence [i, i′], then this is formulated by minKj ‖x̄[i,i′] −J[i,i′]Kj‖2 with
x̄[i,i′] = x[i,i′] − t[i,i′]. The solution is Kj = J †

[i,i′]x̄[i,i′]. We perform the min-
imization in a robust manner to eliminate erroneous image points. We use a
ransac-like algorithm with adaptive number of trials. The number of image
points sampled in the inner loop is � r

2� + 1.

6.4 Nonlinear Refinement

We complete the reconstruction algorithm by minimizing the reprojection error
in order to finely tune the estimate minJ ,t,K ‖V+ � (X − J K − t · 1T)‖2 where
V+ is obtained by duplicating2 each row of the (n × m) visibility matrix V . The
minimization is done in a bundle adjustment manner. More precisly, we use a
damped Gauss-Newton algorithm with a robust kernel. The damping is impor-
tant to avoid singularities in the Hessian matrix, due to the r(r+1) dimensional
coordinate frame ambiguity. Contrarily to the explicit case, see [1,11], no extra
regularizing constraint is necessary.

7 Estimating the Non-rigid Matching Tensors and Ranks

Our method estimates a non-rigid matching tensor over a (sub)sequence, i.e. for
a complete measurement matrix, in a Maximum Likelihood framework. First,
2 This is simply to make it the same size as X .
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we tackle the case where the data do not contain outliers, and when the rank
is given. Second, we examine the case where the data may contain outliers, and
when the rank have to be estimated.

7.1 Outlier-Free Data, Known Rank

We describe a Maximum Likelihood Estimator, that handles minimal and re-
dundent data. The translation t is obtained by averaging the point positions,
and the measurement matrix is then centred as X̄ = X − t · 1T. The problem
of finding the optimal N is formulated by minX̂ ‖X̄ − X̂‖2 s.t. NTX̂ = 0, where
X̂ contains predicted point positions. This is a matrix approximation problem
under rank deficiency constraint. It is solved by computing the svd X̄ = UΣVT,
from which X̂ is obtained by nullifying all but the r leading singular values in
Σ and recomposing the svd. Matrix N is given by the 2n− r last columns of U.

7.2 Contaminated Data, Unknown Rank

In most previous work, the rank of the sequence is assumed to be given. One
exception is Aanæs et al. [1] who use the bic model selection criterion to se-
lect the rank, but do not deal with blunders. When one uses subsequences, the
subsequence rank may be lower than the sequence rank, and must be estimated
along with the matching tensor. In addition, one has to deal with erroneous
image points. We propose to use the robust estimator mapsac in conjunction
with the gric model selection criterion proposed in [7]. gric is a modified bic

for robust least-squares problems. Our algorithm maximizes the gric score, as
follows. In the inner loop of the robust estimator, we sample point tracks and
not only compute a single matching tensor, but multiple ones by varying the
rank. Obviously, an upper bound rmax on the rank is necessary to fix the num-
ber of point tracks that one samples at each trial. One must take into account
that the computational cost rises with rmax. One possible solution is to divide
the sequence of trials into groups using gradually narrower intervals of possible
rank values. The gric score is given by gric =

∑m
j=1 ρ

(
e2

j

σ2

)
+ λd + rm log(m),

where ej is the prediction error for the j-th point track, λ = 4d log(z)−log(2πσ2)
and z is chosen as the image side length. Function ρ is ρ(x) = x for x < t and
ρ(x) = t otherwise, where the threshold t = 2 log(θ) + dλ/(2n) with θ the ratio
of the percentage of inliers to the percentage of outliers. The noise level is ro-
bustly estimated using the weakest model, i.e. for a tensor dimension d = 1, as
σ2 = med(e2

j )/0.67452. We refer the reader to [7] for more details.

8 Experimental Results

Most other methods do not handle missing data, and hence can not be compared
to our. The method from Torresani et al. [8] handles missing data but uses the
explicit model.
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Table 2. (left) Average estimated rank r and (right) its standard deviation σr versus
the true rank r and percentage of outliers

3 6 9 12 15 18

0% 3.82 6.06 8.48 11.28 13.82 16.22
10% 3.86 6.02 8.60 11.02 13.66 16.24
20% 3.72 5.98 8.48 11.20 13.84 16.44
30% 3.64 5.94 8.52 11.00 13.52 16.58
40% 3.60 5.98 8.44 11.00 13.58 16.28
50% 3.40 5.88 8.30 10.86 13.68 16.16

3 6 9 12 15 18

0% 0.38 0.42 0.57 0.66 0.65 1.12
10% 0.35 0.37 0.49 0.65 0.55 1.14
20% 0.45 0.37 0.50 0.60 0.58 0.50
30% 0.48 0.37 0.57 0.53 0.61 0.67
40% 0.49 0.32 0.57 0.53 0.64 1.08
50% 0.49 0.62 0.70 0.63 0.71 1.17

8.1 Simulated Data

We simulated n = 180 cameras observing a set of m = 1000 points generated
from l = 5 basis shapes, hence with rank r = 3l = 15. The configuration weights
are chosen in order to give a decaying energy to successive deformation modes.
The simulation setup produces a complete measurement matrix X̃ , from which
we extract a sparse, band-diagonal measurement matrix X , similar to what a
real intensity-based point tracker would produce. A Gaussian centred noise with
variance σ2 = 1 is added to the image points.

In the experiments, we measured the reprojection error and the generalization
error, which are dubbed in a machine learning context training and test error re-

spectively. The reprojection error is E =
√

1
e‖V+ � (X − J K − t · 1T)‖2, where

e is the total number of visible image points. In other words, the reprojec-
tion error reflects the difference between the measures and the predictions. The
generalization error is given by Gγ =

√
1
eγ

‖Ṽ+
γ � (X̃ − J K − t · 1T)‖2, where γ

indicates the percentage of hidden image points in X̃ involved in the estima-
tion and eγ is the total number of image points used in the calculation. The
(n × m) matrix Ṽγ indicates which image points are used in the calculation:
it is constructed by including points further away from the visible points area
while γ grows, i.e. Ṽ0 = V and Ṽ100 = 1(n×m). For example, G0 = E and

G100 =
√

1
nm‖X̃ − J K − t · 1T‖2, i.e. all the visible and hidden image points

are used to compute the error. Obviously, we expect the generalization error to
be greater than the reprojection error, and to grow with γ.

The first experiment we performed consists in varying the level of added noise
σ for different percentages γ of hidden points to compute the generalization error.
The results are shown on figure 1 (b). We observed that the reprojection error
is slightly higher than the level of noise. The ability to generalize is accurate for
a 1 pixel noise level, and smoothly degrades for larger noise levels, but is still
reasonable: in the tested rang σ = 0, . . . , 5 pixels, the γ = 100% generalization
error is slightly higher than twice the noise level.
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Fig. 1. Reprojection and generalization error versus (a) the variance of added noise σ
for different percentages γ of hidden points to compute the generalization error and (b)
the rank r for different percentages γ of hidden points to compute the generalization
error. The true rank r = 15 is indicated with a vertical bar.

The second experiment we performed consists in varying the rank used in
the computation, namely we tested r = 11, . . . , 27, for different percentages γ
of hidden points to compute the generalization error. The results are shown
on figure 1 (b). We observed that it is preferable to overestimate rather than
to underestimate the rank, up to some upper limit. A similar experiment with
roughly equal magnitude configuration weights to generate the data shows that
r can be slightly underestimated and largely overestimated. The conclusion is
that in practice, overestimating the rank is safe.

The third experiment is devised to assess the quality of the rank estimation
based on gric in the presence of outliers. We tested for true ranks in the range
r = 3, . . . , 18 which covers what one expects to meet in practice. The results
we obtained are shown in table 2, which shows averages over 50 trials. We ob-
served that these results are acceptable, even if the gric criterion we used is
slightly biased since low ranks, i.e. less than 6, are slightly overestimated, while
larger ranks, i.e. greater than 9 are slightly underestimated. It is however pos-
sible to correct for this bias in accordance with our conclusions on the previous
experiment.

8.2 Real Data

We tested our algorithm on several image sequences. For one of them, extracted
from the movie ‘Groundhog Day’, we show results. The sequence shows a man
driving a car with a groundhog seated on his knees. The head of the man is
rotating and deforming since he is speaking, and the animal is looking around,
deforming its fur, opening and closing its mouth. Finally, the interior of the car
is almost static, while the exterior is rigid, but moving with respect to the car.
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Fig. 2. (top) 5 out of the 154 frames and (bottom) the visibility matrix V for the
‘Groundhog Day’ sequence

Fig. 3. (left) One frame with points and motion vectors reprojected from the recon-
structed model and (right) Closeup on the actor, the groundhog and the background
overlaid with points and motion vectors reprojected from the reconstructed model
(white dots), original points (light grey squares) and outliers (dark grey diamonds)

The sequence contains 154 images, see figure 2 (top). We ran a klt-like point
tracker. We obtained a total of 1502 point tracks after having removed the small
point tracks, namely which last less than 20 views. The visibility matrix, shown
on figure 2 (bottom) is filled to 29.58%.

For some parts of the sequence, where the motion of the different moving and
deforming parts in the images is slow, computing the matching tensors is quite
easy. Indeed, blunders can clearly be detected and classified as outliers. However,
other parts in the sequence contain significant motion between single frames
and motion blur occurs, making the point tracks slightly diverging from their
‘true’ position, and making the detection of outliers difficult. Large illumination
changes sometimes make the tracker fails for entire areas of the image.

The reprojection errors we obtained at the non-rigid matching tensors esti-
mation stage were distributed between 0.5 and 0.9 pixels, and 0.65 pixels on
average. We used a user-defined rank r = 15. The initialization step yielded
58021 inliers over 68413 image points, i.e. the inlier rate was 84.8%, with a
reprojection error of 1.19 pixels. The robust bundle adjustment yielded 61151
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inliers, i.e. the inlier rate was 89.4%, with a reprojection error of 0.99 pixels. We
believe it is a successful result on this challenging image sequence.

9 Conclusions

We proposed an implicit imaging model for non-rigid scenes, from which we
derived non-rigid matching tensors and closure constraints. Based on these the-
oretical concepts, we proposed a robust batch implicit Structure-From-Motion
algorithm for monocular image sequences of non-rigid scenes, dealing with miss-
ing data and blunders. Future work will be devoted to comparing various model
selection criteria, and segmenting the scene based on the configuration weights,
to recover objects that move or deform independently.
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Abstract. Three-dimensional structure information can be estimated
from two-dimensional perspective images using recursive estimation meth-
ods. This paper investigates possibilities to improve structure filter per-
formance for a certain class of stochastic perspective systems by utilizing
mutual information, in particular when each observed point on a rigid ob-
ject is affected by the same process noise. After presenting the dynamic
system of interest, the method is applied, using an extended Kalman fil-
ter for the estimation, to a simulated time-varying multiple point vision
system. The performance of a connected filter is compared, using Monte
Carlo methods, to that of a set of independent filters. The idea is then fur-
ther illustrated and analyzed by means of a simple linear system. Finally
more formal stochastic differential equation aspects, especially the impact
of transformations in the Itô sense, are discussed and related to physically
realistic noise models in vision systems.

1 Introduction

In many computer vision applications it is required that 3-D information can
be estimated from 2-D images. It is possible to estimate 3-D parameters related
to structure and/or motion, given a sequence of images, by employing an algo-
rithm that utilizes information from all images in the sequence as input data.
An overview of this type of algorithms can be found in e.g. [7,10]. Another class
of algorithms uses a dynamic systems formulation for the purpose of estimation.
The quantities to be estimated are then expressed as states or parameters of
a dynamic system, and the estimation task is posed as a problem of state or
parameter estimation. The resulting estimation algorithm typically performs re-
cursive estimation, where the estimated quantities are updated each time a new
image is processed.

The use of dynamic systems theory for estimation of motion is described e.g.
in [20]. Estimation of structure using dynamic systems is described e.g. in [19],
which contains results regarding observability, and also presents algorithms and
experimental results.
� This work was partially supported by the SRC project 621-2002-4831.
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The algorithms presented in [19] and [20] describe structure and motion es-
timation using a camera as the only measurement device. Algorithms can also
be developed for situations where additional measurement devices are used, or
where additional knowledge of specific quantities are available, e.g. situations
where the linear and/or angular velocity of an object is measured or estimated.
This type of algorithms includes e.g. estimation of orientation, using a camera
and an inertial measurement unit, as shown in [18], or estimation of orientation
and position, using a camera moving with known angular and linear velocities,
as presented in [1].

Recursive estimation of the 3-D position of one or more feature points on a
rigid object from 2-D perspective observations, assuming measured or estimated
values of the angular and the linear velocities, has been conducted by means of
an extended Kalman filter [2,11], or by other types of more specialized nonlinear
observers [3–5,9, 12].

The observers in [3–5, 9, 12] all focus on the estimation of the position of a sin-
gle feature point. This paper investigates performance issues in simultaneous posi-
tion estimation for multiple points. The filter construction is based on an extended
Kalman filter, and it is exemplified how the estimation can be improved using a
connected filter, under the assumption of a special process noise structure.

2 Perspective System

The object motion and the corresponding observations are described using a
dynamic system. The system combines a set of stochastic differential equations
for the position of a number of feature points on an observed object, with noise
corrupted measurement equations in the form of perspective projections defined
using an appropriate camera model. In this section the corresponding determin-
istic dynamic system is presented under the assumptions of rigid body motion
and a simple frontal pinhole imaging model, and a coordinate transformation is
introduced in order to obtain a useful alternative system formulation. The math-
ematical model is then extended to include process and measurement noise, and
consequently re-formulated in stochastic differential form.

2.1 Dynamic System

The 3-D position of n selected feature points on a given object is described using
coordinates xk =

(
xk

1 xk
2 xk

3
)T, k = 1...n. Under the assumption of rigid body

motion, each xk can be shown to satisfy the differential equation

ẋk = Axk + b , xk(0) = xk
0 , (1)

where A is the skew-symmetric matrix

A =

⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

⎞
⎠ , (2)

parameterized by the angular velocity vector ω = (ω1 ω2 ω3)
T, and b is the vector
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b =
(
b1 b2 b3

)T = ḋ − Ad , (3)

where d denotes the vector from the origin of an inertial coordinate system to
the origin of a local coordinate system, attached to the body, as illustrated in
Fig. 1. For a detailed description of the characteristics of rigid body motion, see
e.g. [15].

A camera model is defined as a transformation of the 3-D coordinates for a
feature point xk, resulting in projected 2-D image coordinates yk for the point.
Considering an object point with 3-D coordinates expressed, in the camera coor-
dinate system, by the vector xk, and using a frontal pinhole imaging model [10],
where the optical axis is chosen to coincide with the direction of xk

3 , the following
transformation rule can be derived,

yk =
1
xk

3

(
m1f s 0

0 m2f 0

)
xk =

1
xk

3
Cxk , (4)

where the parameter f is the focal length, s ≥ 0 is the skew factor, describing
the situation where the image coordinate axes are not perpendicular, and m1
and m2 are strictly positive scaling factors, acting in the horizontal and vertical
direction of the image respectively.

object

camera

x

 y

d

Fig. 1. Coordinate systems employed for specifying the position of a 3-D point x,
belonging to an observed object, and its projection y onto a 2-D image plane

Combining (1) and (4), a dynamic system with state vectors xk, k = 1...n
and corresponding output vectors yk =

(
yk
1 yk

2
)T

can be constructed as
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⎧⎨
⎩

ẋk = Axk + b , xk(0) = xk
0

yk =
1
xk

3
Cxk .

(5)

Note that due to the rigid body assumption and the use of a single camera, the
parameter matrices A, b and C are common to all the points. Since the system
(5) describes the motion of 3-D feature points observed by images obtained under
perspective projection, it is usually denoted a dynamic perspective system [6].

In the case of rigid body motion, the parameter matrices A and b in (5) are in
general time-varying. Also, the intrinsic camera parameters in C could change
with time, e.g. as a consequence of zooming. Equation (5) then constitutes an
affine, time-varying, dynamic system for the 3-D state xk, combined with a
time-varying nonlinear output equation. However, for clarity of presentation,
the time-dependency of A, b and C will not be made explicit.

In the following it is assumed that the camera is calibrated, i.e. that C is
known, and that the motion parameter matrices A and b are available, either by
construction or by measurements.

2.2 Coordinate Transformation

Introduce the coordinate transformation

zk
1 =

xk
1

xk
3

, zk
2 =

xk
2

xk
3

, zk
3 =

1
xk

3
, (6)

which is used also in e.g. [3–5, 9], and define the new parameter matrices

Ā =

⎛
⎝ 0 −ω3 b1

ω3 0 b2
0 0 0

⎞
⎠ , b̄ =

⎛
⎝ ω2

−ω1
0

⎞
⎠ , c̄ =

⎛
⎝ ω2

−ω1
−b3

⎞
⎠ . (7)

The system (5) can then be transformed to a new system in the z-coordinates
as {

żk = Āzk + b̄ + (c̄Tzk)zk , zk(0) = zk
0

yk = Czk .
(8)

Note that due to the transformation, the output equation is now linear in the
states, and that the nonlinearities have been shifted to the state equations.

2.3 Stochastic Generalization

An important issue in many applications of computer vision-related estimation
is the presence of noise inputs, e.g. due to motion inaccuracies and measurement
disturbances, or due to uncertainties in the underlying mathematical model it-
self. To obtain more general models, it is therefore desirable to include stochastic
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elements in the dynamic system equations. Here we consider the following gen-
eralizations of (5) and (8), represented by stochastic integral equations written
in differential form as

⎧⎨
⎩

dxk =
[
Axk + b

]
dt + Gk

x dβk
w , xk(0) = xk

0

dȳk =
1
xk

3
Cxkdt + Dkdβk

v ,
(9)

and {
dzk =

[
Āzk + b̄ + (c̄Tzk)zk

]
dt + Gk

z dβk
w , zk(0) = zk

0

dȳk = Czkdt + Dkdβk
v ,

(10)

for k = 1...n, where the integrated measurement representations

ȳk(t) =
∫ t

0
yk(τ)dτ (11)

have been introduced. The noise influence is described using vector-valued stan-
dard Wiener processes βk

w and βk
v , and matrix valued functions Gx = Gk

x(xk, t),
Gk

z = Gk
z(zk, t), and Dk = Dk(t), normally denoted diffusion coefficients. The

Wiener processes βk
w and βk

v are referred to as process noise and measurement
noise respectively. Note that, although we usually do not have integrated mea-
surements, no information is lost or gained by considering (11) as our obser-
vations instead of y, since given y(τ) for 0 ≤ τ ≤ t it is possible to compute
ȳ(τ) for 0 ≤ τ ≤ t, and vice versa. A detailed treatment of the formalism and
interpretation of stochastic differential equations can be found e.g. in [17].

3 Filter Algorithm

A structure from motion filter design problem can now be formulated as the
task of recursively estimating the n unknown 3-D position vectors xk, each gov-
erned by the system model (9), at some time instant t, given the corresponding
perspective measurements yk up to that instant, in a way that is in some sense
optimal. Another possibility is to use the transformed system formulation (10)
for the estimation, and then recover the 3-D position by inverse transformation.

In designing a filter for either of the systems (9) and (10) it is possible to con-
sider the motion of each point as a separate 3-state system, and apply to each an
individual filter. Thus the state estimation is performed using n independent fil-
ters for the n points. In this approach, obviously no improvement in the estimate
for any individual point can be made, in comparison with the single point case.
Another approach is to assemble the equations for the n feature points into a
single 3n-dimensional system, and construct a connected filter which can utilize
any common information present. For example, it is a reasonable conjecture that
if there exists some kind of correlation, or other dependency, between the noise
input vectors, the connected filter approach rightly handled will lead to a better
estimation performance.
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3.1 The Extended Kalman Filter

State estimation in a system of equations can be performed in various ways. We
will here make use of the extended Kalman filter (EKF) [13], which, although
essentially a kind of ad hoc linearizing approach, is a widely used and often
successful technique for nonlinear filtering.

Consider a nonlinear dynamic system on the form{
dz = f(z, t)dt + B(t)dβw

dȳ = h(z, t)dt + D(t)dβv .
(12)

For simplicity of notation, introduce matrices Q and R, such that Q = BBT and
R = DDT. It is assumed in the following that the diffusion coefficients B and
D are known, and that D is such that R is positive definite for all t. Also let
Fẑ = Fẑ(ẑ, t) and Hẑ = Hẑ(ẑ, t) denote the partial derivative matrices of f and
h, respectively, with respect to z, evaluated at z = ẑ. In the EKF, the estimate
update equation is then given by

˙̂z = f(ẑ, t) + K(y − h(ẑ, t)) , ẑ(0) = ẑ0 , (13)

with the gain matrix K computed as

K = PHT
ẑ R−1 , (14)

where P is determined by the continuous time matrix Riccati differential equa-
tion

Ṗ = Fẑ + PF T
ẑ + Q − PHT

ẑ R−1HẑP P (0) = P0 . (15)

Note that this formulation of the EKF assumes that measurements are contin-
uously available, while in many applications, especially in computer vision, it
is often natural to consider the outputs as being given at discrete time points.
Details on the EKF algorithm for the case of discrete time measurements can
be found e.g. in [13].

It has been observed in [8], that some of the standard filters, such as the EKF,
in general performs poorly when applied directly to perspective-type systems.
In [8] it is also demonstrated by simulations and experiments that by applying a
coordinate transformation of the type (6), that linearizes the measurement equa-
tions and shifts the nonlinearities to the state equations, these adverse effects
can be significantly reduced. It is therefore motivated to perform the structure
from motion filtering in the system (10).

Note that if the diffusion coefficients of the differential equations in question
are state dependent, a situation sometimes referred to as differential equations
with level effects, the EKF cannot be directly applied, and the estimation process
then normally requires approximate and computationally expensive higher order
filters [13]. In [16] a transformation is proposed in order to remove the level effects
for a quite restricted class of nonlinear systems. However, the limitations of the
method are quite severe, since the requirements are that all the elements of
the diffusion coefficient matrix must be strictly non-zero, and that each element
should be a function of a single state variable only, with no two elements on the
same row depending on the same state variable.
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3.2 Observing Multiple Points with Identical Process Noise

Assume that n points are being observed under perspective projection. Moti-
vated by the previous section, we further make the assumption that the motion
of each individual point xk is such that it can be described in the transformed
coordinates zk by a dynamic system of the type (10), with state independent
diffusion coefficients Gk

z . As mentioned above, it is expected that the estimation
performance improvement when using a connected filter will be more signifi-
cant when the process noise is correlated. As an extreme case, assume that the
process noise vectors influencing each coordinate zk are identical, i.e. βk

w = βw

for k = 1...n, and also that each zk is influenced in the same way by βw, i.e.
Gk

z = Gz for k = 1...n. The measurement noise vectors βk
v and the functions Dk,

on the other hand, are allowed to be different for different points. The systems
can then be described in the transformed coordinates as{

dzk =
[
Āzk + b̄ + (c̄Tzk)zk

]
dt + Bdβw , zk(0) = zk

0

dȳk = Czkdt + Dkdβk
v ,

(16)

for k = 1...n, where B is assumed to be a state independent matrix.
Define z, ȳ and βββv to be the vectors obtained by stacking the n vectors zk, ȳk

and βk
v respectively, and b̄ the vector obtained by stacking n copies of b̄. Further

let Ā and C be the matrices obtained by tiling n copies of Ā and C into diagonal
matrices. Similarly, let D be defined as the 2n × 2n block diagonal matrix with
diagonal elements Dk. Also introduce c̄ as the 3n × 3n block diagonal matrix
with diagonal elements (c̄ c̄ c̄)T. The system (16) can then be written as

{
dz =

[
Āz + b̄ + diag(z)c̄z

]
dt + Bdβββw , z(0) = z0

dȳ = Czdt + Ddβββv ,
(17)

with the structure of B and βββw to be determined.
The EKF algorithm presented in Sect. 3.1 applied for state estimation in (17)

then consists of the following equations

˙̂z =
[
Āẑ + b̄ + diag(ẑ)c̄ẑ

]
+ K(y − Cẑ) , ẑ(0) = ẑ0 (18)

K = PCTR−1 (19)

Ṗ = FP + PFT + Q − PCTR−1CP , P (0) = P0 , (20)

with Q = BBT and R = DDT, and where F denotes the Jacobian

F(ẑ, t) = Ā + diag(ẑ)c̄ + diag(c̄ẑ) . (21)

The choice of structure for B determines the structure of Q in (20), and it can
be seen by inspection that, given a block diagonal initial error covariance matrix
P0 with 3×3 blocks on the diagonal, a corresponding block diagonal B will yield
a block diagonal solution matrix P (t), whereas a full matrix B will lead to a full
solution matrix P (t).
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Thus, choosing B to be the 3n × 3n block diagonal matrix with n copies of
B as its diagonal elements and zeros elsewhere will be equivalent to applying n
independent filters to the system (17), in the sense that the n filters then are
run in parallel, and the estimate for each individual point zk consequently is
obtained independently from the estimates of the other n− 1 points. In order to
keep dimensions consistent, βββw is in this case defined to be the vector obtained
by stacking n copies of βw.

On the other hand, a connected filter for the n points in (17), can be obtained
by selecting B as the 3n × 3-matrix

B =
(
BT BT . . . BT

)T
, (22)

and consequently defining βββw to be equal to βw. This choice of B will cause Q
to be a full matrix, and hence cause the estimates of the individual points to
influence each other through the computation of P (t).

3.3 A Perspective System Example

This section illustrates the improvement gained by utilizing the proposed con-
nected filter design on a stochastic perspective system with time-varying para-
meters. All simulations were done using Matlab.

Consider the transformed stochastic perspective system (16) governed by the
parameter vectors and matrices

ω = π
(
0.4, 0.5, 0.5

)
, b =

(
1, −0.5t + 0.4, 0.5t − 0.4

)T
,

B = I3×3 , Dk = 0.01 · I2×2 , ∀k ,

and with the perspective projection parameters in (4) given by f = m1 = m2 = 1
and s = 0. The system (16) was simulated by employing an explicit fixed-step
second order differential equation solver on a grid of step size 0.001. The ef-
fect of the noise terms was approximated by addition of pseudo-random normal
distributed numbers of zero mean and the proper variance, in each step of the
integration. To initiate the Riccati differential equation (15) employed in the
EKF filter, the initial covariance matrix was set to P0 = 300 · I3n×3n. The filter
was implemented using the Dormand-Prince algorithm.

In order to investigate the influence of a connected filter on this system a
hundred-run Monte Carlo simulation was performed. It included estimation using
both independent filters, and a connected filter for up to five 3-D points, for
each noise realization. For each realization identical process noise was injected
in the same way, according to (16), to each 3-D transformed state vector zk. The
results for one of these points are shown for comparison in Fig. 2 and Fig. 3. Let
a normalized variance v0 be defined as

v0 =
var(x1

3 − x̂1
3,c)

var(x1
3 − x̂1

3,p)
, (23)

where subscripts c and p denote the estimates obtained using the connected filter
and the independent filters, respectively. For the difference estimation error plot,
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Fig. 2. Depth estimation error x1
3− x̂1

3 (top plot), and depth difference estimation error
(x1

3 − x2
3) − (x̂1

3 − x̂2
3) (lower plot), averaged over 100 different noise realizations

shown as the lower plot in Fig. 3, v0 was similarly constructed. In both cases, v0
was computed based on the data from the same time interval as that shown in
Fig. 2.

It can be seen in the upper plot in Fig. 2 that the connected filter tends
to center the estimation error around zero, thus decreasing the drift present in
the independent filter estimation process. In Fig. 3 it is clearly seen that uti-
lizing several points and a connected filter in the estimation process leads to a
significantly decreased variance for the estimation error, compared to using inde-
pendent filters. It can also be seen that the decrease in the difference estimation
error variance when utilizing a connected filter, is even more distinct. On the
other hand, the additional decrease in the error variance obtained by including
more than two points in the connected filter is quite small.

4 Explicit Analysis of a Linear Example

This section is intended to further study and exemplify the idea that if a con-
nected filter is used, the state estimation results can be improved for a certain
class of noise models.

4.1 Analytical Variance Comparison for Single State Systems

For the purpose of illustration, consider two one-dimensional linear systems, with
corresponding linear output equations, affected by the same scalar process noise,
according to{

dz1 = az1dt +
√

σdβw

dȳ1 = z1dt +
√

ηdβ1
v

and

{
dz2 = az2dt +

√
σdβw

dȳ2 = z2dt +
√

ηdβ2
v

(24)
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Fig. 3. Normalized variance for the depth estimation error x1
3 − x̂1

3 (top plot), and for
the depth difference estimation error (x1

3 −x2
3)− (x̂1

3 − x̂2
3) (lower plot), vs. the number

of points employed in the connected filter

where βw and βk
v , k = 1, 2, are scalar standard Wiener processes. The parameter

a is assumed to be a real constant, and η and σ are assumed to be strictly
positive numbers.

In order to estimate the states z1 and z2 given the measurements dȳ1 and dȳ2,
we again apply the EKF, which for this (linear) system automatically reduces to
the standard linear Kalman filter, described e.g. in [14]. Introducing the system
matrices

F =
(

a 0
0 a

)
, H =

(
1 0
0 1

)
, (25)

and assuming stationarity, i.e. Ṗ = 0, the Riccati differential equation (15) for
the propagation of the error covariance matrix becomes

P 2 − 2aηP − ησBBT = 0 . (26)

Here the structure of the matrix B will be used to determine the filter design
philosophy. Equation (26) is a second order matrix polynomial equation, with
solutions

P = aηI ±
√

a2η2I + ησBBT . (27)

The solution to (27) now splits into two cases, depending on the method chosen
to construct the Kalman filter.
Independent filters: The filters for the two states are run in parallel. This is
accomplished by letting B = I. Consequently, by (27) we get

Pp =
[
aη ±

√
a2η2 + ησ

]
I . (28)
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Since Pp is a covariance matrix and η, σ > 0, the minus sign yields an infeasible
solution. Hence one obtains an expression for the error covariance matrix for the
independent filters as

Pp =
[
aη +

√
a2η2 + ησ

]
I . (29)

Connected filter: Here a connected filter is constructed to utilize the common
noise information. For this purpose, we select B = (1 1)T, which results in

BBT =
(

1 1
1 1

)
. (30)

Consequently, by (27),

Pc = aηI ±
√(

(a2η2+ησ) ησ

ησ (a2η2+ησ)

)
.= aηI ±

√
W (a, η, σ) . (31)

Using the decomposition W = V −1DV , with D diagonal (which always exists
since W is symmetric), and some elementary matrix theory, now gives

Pc = aηI ±
√

V −1DV = aηI ± V −1
√

DV . (32)

For this simple system it is easy to find analytical expressions for the decompo-
sition matrices D and V as

D =
(

a2η2 0
0 a2η2 + 2ησ

)
, V =

(
−1 1
1 1

)
. (33)

Again, the minus sign in (32) clearly yields an infeasible solution. Hence, the
expression for the error covariance matrix for the connected filter becomes

Pc =
1
2

(
(2a+|a|)η+

√
a2η2+2ησ −|a|η+

√
a2η2+2ησ

−|a|η+
√

a2η2+2ησ (2a+|a|)η+
√

a2η2+2ησ

)
. (34)

Thus for a ≥ 0 (unstable systems), we get

Pcu =
1
2
aη

(
3 −1

−1 3

)
+

1
2

√
a2η2 + 2ησ

(
1 1
1 1

)
. (35)

Similarly, for a < 0 (stable systems), we get

Pcs =
[
1
2
aη +

1
2

√
a2η2 + 2ησ

] (
1 1
1 1

)
. (36)

Denote by vp, vcu and vcs the estimation error variance for one of the states, i.e.
one of the diagonal elements in (29), (35) and (36), respectively. By straightfor-
ward analysis it can be shown that vp ≥ vcu for a ≥ 0 and η, σ > 0, and that
vp ≥ vcs for a < 0 and η, σ > 0. For the case a > 0, introducing
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κ =
σ

a2η
, (37)

results in
vcu

vp
=

3 +
√

1 + 2κ

2 + 2
√

1 + κ
. (38)

The inequality vp ≥ vcu is thus proven if it can be shown that

g(κ) .= 2
√

1 + κ −
√

1 + 2κ ≥ 1 , (39)

for ∀κ > 0. Now since

g(0) = 1 and g(κ) ≈
(
2 −

√
2
) √

κ > 1 for κ � 0 , (40)

it thus suffices to show that g(κ) is monotone. But this follows directly from the
inequality

dg

dκ
=

1√
1 + κ

− 1√
1 + 2κ

> 0 . (41)

Similarly, it can be shown that vp ≥ vcs for a < 0 and η, σ > 0. Consequently the
connected filter strategy results in a decrease in the variance of the estimation
error.

The above analysis can easily be extended to n one-dimensional systems with
similar results. For example, for a < 0 we have

vcs(n) =
1
n

aη +
1
n

√
a2η2 + nησ . (42)

In Fig. 4 the variance ratio vcs/vp is plotted against the number of points n for
the parameter values a = −10, σ = 10−2 and η = 10−4. By comparison with the
upper plot in Fig. 3 it can be seen that the behavior is similar.

By comparing the lower and upper plots in Fig. 3 it can be seen that the
improvement in the difference estimation error variance is slightly better than
that for the depth estimation error variance. This type of improvement can
be seen also in the linear example. For example, in the stable system case all
elements of the estimation error covariance matrix are equal, as can be seen in
(36). Therefore the stationary value of the variance of the difference in estimation
errors is identically zero in this case.

5 More Accurate Noise Modeling

In section 3.2 identical additive process noise was introduced in the transformed
perspective system, as can be seen in (16). The addition of identical process
noise to each feature point in a rigid body dynamic system can be interpreted as
the modeling of actuating forces or other influences affecting all of the observed
points in a way that preserves the rigid structure. This implies however, that the
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Fig. 4. Normalized variance for the linear system steady state estimation error z1 − ẑ1

vs. the number of points utilized in the connected filter

process noise should be added identically to each point in the original system,
i.e. as ⎧⎨

⎩
dxk =

[
Axk + b

]
dt + Bdβw

dȳk =
1
xk

3
Cxkdt + Dkdβk

v .
(43)

In integrating stochastic differential equations one needs to make a choice on the
interpretation of the integral of the noise term, which in turn has implications e.g.
for transformations performed on the state variables. One possible interpretation
of the integral is the Itô interpretation [17]. For a stochastic differential

dx = f(x, t)dt + G(x, t)dβw , (44)

and a transformation of the type

zj(t) = uj(x(t), t) , (45)

where x(t) is a solution to (44), and uj(x(t), t) are sufficiently smooth scalar
functions, this choice of interpretation then leads to the Itô formula

dzj =
[
∂uj

∂t
+ fT∇uj +

1
2

tr (GGT∇ [∇uj ])
]

dt + ∇uT
jGdβw . (46)

Here ∇uj and ∇ [∇uj ] denotes the gradient of uj and the matrix of second
partial derivatives of uj, respectively, and tr means the trace of a matrix.

To illustrate the effect of (46) in relation to the system (43), assume that B is
diagonal with all elements equal to σ, i.e. B = σ · I. Applying the transformation
(6) according to the Itô formula then yields the transformed system{

dzk =
[
Āzk + b̄ + (c̄Tzk)zk + σ2(zk

3 )2zk
]
dt + σS(zk)dβp

dȳk = Czkdt + Dkdβk
m ,

(47)
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with

S(zk) =

⎛
⎝zk

3 0 −zk
1zk

3
0 zk

3 −zk
2zk

3
0 0 −(zk

3 )2

⎞
⎠ . (48)

If we instead make the Stratonovich interpretation [17] of the stochastic integrals,
the ordinary chain rule will hold, and the transformed system becomes{

dzk =
[
Āzk + b̄ + (c̄Tzk)zk

]
dt + σS(zk)dβp

dȳk = Czkdt + Dkdβk
m ,

(49)

with S(zk) as in (48). The immediate difference between the two interpretations
then lies in the additional drift term introduced via the Itô formula in (47).

Still, no matter which interpretation of the two mentioned we make for the
stochastic integrals, clearly the transformation destroys the physically motivated
additive input noise structure assumed for the rigid body model in (43). The
analysis of filters for systems such as (47) or (49), especially in the context
of connected filters and improved structure estimation, is a subject for future
research.

6 Conclusions

Three-dimensional structure information can be estimated from 2-D images.
In this paper, we have investigated the use of a nonlinear connected filter for
recursive structure estimation in a rigid body motion perspective vision system,
possibly affected by both measurement noise and process noise.

The filter is derived using the EKF algorithm for a transformed perspective
dynamic system, under the assumption of identical and additive process noise
for all feature points in the transformed system. A simulation-based comparison
between a connected filter for n observed points, and n independent filters, shown
in Fig. 2 and Fig. 3, indicates that the estimation error performance is improved
when using the connected filter.

A theoretical analysis of an idealized linear system with identical process
noise for all states further motivates the connected filter concept. Analytical
expressions for the estimation error variance are derived in the linear case, where
it can be directly seen how the estimation performance is affected by the noise
properties and the number of points used in the connected filter.

An alternative model, which more accurately reflects the properties of a rigid
body system, can be obtained by using additive identical process noise in the
original system. However, the employed transformation then leads to a stochastic
system with state dependent noise terms, for which it is not straightforward to
use e.g. an extended Kalman filter.

Future work includes construction and investigation of the effect of connected
filters on systems with more complex noise models. Another interesting problem
concerns the influence of uncertainties in the motion parameters, and the relation
to adaptive filtering techniques.
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Abstract. We propose an algorithm for recursive estimation of struc-
ture and motion in rigid body perspective dynamic systems, based on
the novel concept of continuous-differential matching constraints for the
estimation of the velocity parameters. The parameter estimation proce-
dure is fused with a continuous-discrete extended Kalman filter for the
state estimation. Also, the structure and motion estimation processes
are connected by a reprojection error constraint, where feedback of the
structure estimates is used to recursively obtain corrections to the mo-
tion parameters, leading to more accurate estimates and a more robust
performance of the method. The main advantages of the presented al-
gorithm are that after initialization, only three observed object point
correspondences between consecutive pairs of views are required for the
sequential motion estimation, and that both the parameter update and
the correction step are performed using linear constraints only. Simu-
lated experiments are provided to demonstrate the performance of the
method.

1 Introduction

Structure from motion is one of the central problems in computer vision and has
been extensively studied during the last decade. Given a sequence of 2-D images
obtained using a single moving camera, the objective is to compute the motion
of the camera and a 3-D model of the observed scene. The standard method is
to first estimate the motion of the camera, based on matching tensors, obtained
from point correspondences in a discrete image sequence. Then, given the motion
of the camera, the structure of the scene is obtained as a sparse set of 3-D points,
which can be used as a starting point for surface estimation or texture mapping,
c.f. [2].

The most common method for estimation of the matching constraints is based
on a discrete setting, where e.g. the fundamental (or essential) matrix is esti-
mated between an initial view and another view obtained later in the sequence,

� This work was partially supported by the SRC project 621-2002-4831.

R. Vidal, A. Heyden, and Y. Ma (Eds.): WDV 2005/2006, LNCS 4358, pp. 285–298, 2007.
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c.f. [4]. Another approach, closely related to optical flow, is to use a continu-
ous setting and estimate the motion parameters from continuous time matching
constraints based on image point positions and velocities, c.f. [5, 11, 13].

A large class of algorithms utilizes a dynamic systems formulation for the pur-
pose of estimation. The quantities to be estimated are then expressed as states or
parameters of a dynamic system, and the estimation task is posed as a problem
of state or parameter estimation. The resulting estimation algorithms typically
perform recursive estimation, where the estimated variables are updated each
time a new image is processed. The use of dynamic systems theory for estima-
tion of motion is described e.g. in [6,10]. Estimation of structure using dynamic
systems is described e.g. in [9], which contains results regarding observability,
and also presents algorithms and experimental results.

Attempts has been made to combine the discrete and the continuous meth-
ods. In [12], a number of differential matching constraints were derived and
an algorithm for updating the fundamental matrix along an image sequence was
outlined. However, no experimental evidence or details about the algorithm were
given. In this work we derive and utilize a novel matching constraint, called the
continuous-differential epipolar constraint (CDEC), for the estimation of mo-
tion parameters. The CDEC is here fused with a continuous-discrete extended
Kalman filter for the state estimation, in order to construct an algorithm for
recursive estimation of both structure and motion in a rigid body perspective
system. The system is here formulated as a set of ordinary differential equations
describing the motion of an object, combined with a measurement equation in
the form of perspective observations given at discrete time instants. We also
introduce a linear reprojection error constraint, where feedback of the structure
estimates is used to recursively obtain corrections to the motion estimates. This
constraint connects the structure and motion estimation processes in a consis-
tent way, and is shown by simulations to significantly improve the performance
of the method.

The main advantages of the CDEC-based method is that three image corre-
spondences between consecutive image pairs are sufficient for the motion para-
meter estimation, and that the update, as well as the parameter refinement step,
are performed using linear constraints only. This is clearly an advantage e.g in
real time applications, where computational speed and memory size might be
important performance factors.

2 Perspective System

2.1 Motion Models

We consider two coordinate frames. One coordinate frame, the inertial world
coordinate frame, is considered fixed, while the other frame is assumed to be
attached to a moving camera, with its origin located at the camera center and
its third coordinate axis aligned with the optical axis. Without loss of generality,
the moving camera frame can be assumed to coincide with the inertial frame at
some initial time instant t0.
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The relative motion between two camera positions is assumed to be described
by a rigid body transformation, obtained using a rotation matrix R ∈ SO(3)
and a translation vector b ∈ R

3. Then, given a 3-D point on an observed object,
its inertial coordinates Xt0 and Xt relative to the camera positions at time t0
and t respectively, are related by

Xt = RtXt0 + bt . (1)

Assuming R and b to be sufficiently smooth as functions of time, the same rela-
tion can be described in the continuous case using a dynamic systems formulation
as

Ẋ(t) = ŵ(t)X(t) + ν(t) , X(t0) = Xt0 , (2)

where ν ∈ R
3×1 is defined by the relation

ν(t) = ḃ(t) − ŵ(t)b(t) , b(t0) = bt0 , (3)

and ŵ ∈ so(3) is the skew-symmetric matrix

ŵ = ṘRT , (4)

parameterized by the vector w = (w1 w2 w3)T according to

ŵ =

⎡
⎣ 0 −w3 w2

w3 0 −w1
−w2 w1 0

⎤
⎦ . (5)

Note that, for a constant w, we get by (4) that Rt = e�wtRt0 , where Rt0 is
the initial configuration. Also, if we let Rt1 denote the rotation between times
t0 and t1, and let RΔt denote the rotation between times t1 and t2, then the
rotation Rt2 between times t0 and t2 is given by the composition Rt2 = RΔtRt1 .
Further note that the exponential matrix e�wt can be efficiently computed using
Rodrigues’ formula [8].

In (2), w(t) can be interpreted as the angular velocity of the camera in the
inertial coordinates. The additive component ν(t) on the other hand, describes
the translational velocity of an imaginary point attached to the moving camera
frame, traveling through the origin of the inertial system at time t, c.f. [8].

Note that since we normally are able to observe only the relative motion
between the object and the camera, the system (2) can also be interpreted as
describing the motion of a point attached to a moving rigid body, as viewed from
an inertial coordinate frame located at the center of a fixed camera.

2.2 Image Acquisition Models

Assuming a calibrated standard pinhole camera model [2], homogenous image
coordinates xti of an observed object point X = Xt0 , obtained at discrete time
instants ti, can be described using the relation

λtixti = RtiX + bti , i = 0, 1, 2, . . . (6)
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were λti is a scale factor. We will assume that the object coordinate system has
been chosen such that Rt0 = I and bt0 = 0.

In the dynamic system formulation corresponding to (2), the images, again
assumed to be obtained at discrete time instants ti using a calibrated camera,
can be described by the relation

λtixti = Xti , i = 0, 1, 2, . . . (7)

In the following we make the assumption of normalized homogenous image co-
ordinates. Thus λti = X3,ti , i.e. the scale factor λti equals the point depth at
time ti.

Combining the continuous motion equations (2) with the discrete output equa-
tion (7) results in one version of what is sometimes denoted a dynamic perspective
system [1].

In the following it is assumed without loss of generality that t0 = 0, and
that the discrete events are equally spaced in time, i.e. ti+1 − ti = Δt, for
i = 0, 1, 2, . . . , and for some small number Δt > 0.

2.3 Problem Formulation

A structure and motion estimation problem can now be formulated as the task
of recursively estimating both the state X(t) and the motion parameters w(t)
and ν(t) of the system model (2) at the time t, given the set of perspective
measurements Mt = {xti | ∀i : ti ≤ t}. Or equivalently, given Mt, recover the
3-D position X of an observed point on a stationary object and the extrinsic
camera parameters Rt, bt in the model (1).

3 Matching Constraints

3.1 The Standard Epipolar Constraint

Discrete time matching constraints can be obtained using the relation (6), for
several different time instants ti, and eliminating the object point coordinates
X from the resulting system of equations. In this paper we limit ourselves to the
two-view constraint, which is thus obtained from{

λ0x0 = X
λtxt = RtX + bt ,

(8)

where for simplicity of notation we use t = ti for some i ∈ {1, 2 . . .}. Eliminating
X from (8) gives the well known discrete epipolar constraint

xT
0 Rt

T b̂txt = 0 , (9)

where b̂ ∈ so(3) denotes the skew-symmetric matrix corresponding to the vector
b in the same way as ŵ is related to w by (5). The matrix Et

.= Rt
Tb̂t in (9) is

usually denoted the essential matrix.
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If measurements are assumed to be continuously available, continuous time
matching constraints can be similarly derived using a continuous version of the
camera matrix equation (6) giving the continuous epipolar constraint

ẋT ν̂x + xT ŵν̂x = 0 , (10)

with ν and w as in (3) and (4), respectively. For details, see e.g. [6].

3.2 The Continuous-Differential Epipolar Constraint

We now introduce the continuous-differential epipolar constraint (CDEC), which
is one type of hybrid constraints, i.e. constraints combining continuous and dis-
crete elements, that can be used for matching constraint tracking.

Write down the camera matrix equations (6) for times t0 = 0, ti = t and
ti+1 = t + Δt as follows⎧⎪⎨

⎪⎩
λ0x0 = X

λtxt = RtX + bt

λt+Δtxt+Δt = Rt+ΔtX + bt+Δt

(11)

To obtain first order approximations to the parameter matrices Rt+Δt and bt+Δt,
assume ŵ to be constant ŵ ≡ ŵt over the interval [t, t + Δt]. Using (3) and (4)
then results in

bt+Δt ≈ bt + ḃtΔt = bt + (νt + ŵtbt)Δt . (12)

and
Rt+Δt ≈ Rt + ṘtΔt = (I + ŵtΔt)Rt , (13)

Also, as a first order approximation to xt+Δt take

xt+Δt ≈ xt + ẋtΔt ≈ xt + Δxt , (14)

where Δxt is the image flow vector Δxt = xt − xt−Δt. Note that the backward
difference, rather than the forward difference, is used here, since we intend to use
the resulting constraints for recursive parameter estimation, implying knowledge
of image data only up to the current time t.

Eliminating X in (11) using the first equation, expanding until first order in
Δt using (13) and (14), and assuming a normalization of the image coordinates
such that xt = (xt yt 1)T, and hence Δxt = (Δxt Δyt 0)T, results in

[
Rtx0 xt 03×1 bt

ŵtRtx0Δt Δxt xt (νt + ŵtbt)Δt

]
︸ ︷︷ ︸

MCDEC

⎡
⎢⎢⎣

−λ0
λt

λt+Δt − λt

−1

⎤
⎥⎥⎦ = 06×1 . (15)

The CDEC can thus be compactly expressed by the condition

rank [MCDEC] < 4 . (16)
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4 Recursive Structure and Motion Estimation

4.1 Motion Estimation Using CDEC

To perform recursive estimation of both state and parameters in the system
(2) given the perspective output (7), we intend to use the CDEC for sequential
velocity parameter update and recursively feed these updates to a separate state
estimator.

Expanding the minors of MCDEC in (15) and imposing the rank constraint
(16), gives the following different constraints in the motion parameters:

– Minors containing the first three rows give the standard epipolar constraint.
– Minors containing two rows out of the first three give linear constraints in

wt and νt, in total nine such linear constraints.
– Minors containing the three last rows give nonlinear constraints on the mo-

tion parameters.

For our purposes, only constraints of the second type are useful. It turns out
that there only exist two linearly independent constraints on the motion para-
meters from the nine constraints of the second type above. This implies that the
estimates of wt and νt can be updated using only three corresponding points
from a system of the type

Mt

[
wt

νt

]
= mt , (17)

with Mt = Mt(xk
0 ,xk

t , Δxk
t , Rt, bt) ∈ R

9×6 and mt = mt(xk
0 ,xk

t , Δxk
t , Rt, bt) ∈

R
9×1, for the point number index k ∈ {1, 2, 3}. Note that the structure of Mt

and mt may easily be set up in advance, and then evaluated for a given set of
measurements. There is thus no need to actually compute minors in each step
of the algorithm.

Given the new velocity parameter estimates wt and νt, approximate values for
Rt+Δt and bt+Δt can be computed using Rt+Δt = e�wtΔtRt and (12) respectively.

This method for motion recovery represents a huge improvement compared to
the standard discrete approaches, where five point correspondences give highly
nonlinear constraints, and at least eight point correspondences are needed to
obtain reasonably simple linear constraints.

Due to the local nature of the approximations employed in the CDEC, the
method requires fairly accurate initial values for the parameter estimates. An
effective initialization procedure is therefore desirable. In this work we utilize a
method based on the continuous epipolar constraint (10), leading to the con-
tinuous eight-point algorithm [6]. This means that for the very first step of the
estimation process, eight point correspondences are needed between the first two
images. But once the initial parameter estimates are obtained, only three point
correspondences between consecutive pairs of views are needed for subsequent
motion recovery.
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4.2 State Estimation Using the Continuous-Discrete EKF

Given the motion parameters it is possible to employ a number of algorithms
for recursive structure recovery. Here we optionally select a continuous-discrete
extended Kalman (EKF) filter for the state estimation process [7].

It is suggested in [3] that in using an EKF for state estimation in perspective
systems, a coordinate transformation should be performed prior to filtering in
order to avoid adverse effects due to the nonlinearity in the measurement signal
(7). Defining X = ( X1 X2 X3 )T, the transformation used here for this purpose is

Z =
(

X1
X3

X2
X3

1
X3

)T

, (18)

which has the effect of linearizing the measurement equation and instead in-
troducing a multiplicative nonlinearity in the state equations. The transformed
system formulation employed in the state estimation part of the algorithm is
then obtained from (2) and (7), using (18) as{

Ż = AZ + ζ + (ξTZ)Z , Z(0) = Z0

zti = CZti , i = 0, 1, 2 . . . ,
(19)

where A ∈ R
3×3 and ζ, ξ ∈ R

3×1 are new system matrices and vectors, parame-
terized by the velocity vectors w and ν according to

A =

⎡
⎣ 0 −w3 ν1
w3 0 ν2
0 0 0

⎤
⎦ , ζ =

⎡
⎣ w2

−w1
0

⎤
⎦ , ξ =

⎡
⎣ w2
−w1
−ν3

⎤
⎦ , (20)

and where we have also introduced the camera-type matrix

C =
[
1 0 0
0 1 0

]
. (21)

Introducing the estimation error covariance matrix P ∈ R
3×3, and the EKF

parameter matrices Re ∈ R
2×2 and Q ∈ R

3×3, the discrete time measurement
filter algorithm can now be realized as the solution to two groups of equations.
At each ti, as a new measurement zti becomes available, the state estimate Z̃ is
updated according to

Kti = P−
ti

CT
(
CP−

ti
CT + Re

)−1
(22)

Z̃+
ti

= Z̃−
ti

+ Kti(zti − CZ̃−
ti

) (23)

P+
ti

= P−
ti

− KtiCP−
ti

, (24)

where superscripts − and + denote the value of the variable before and after
the update respectively. Between measurements the estimates are propagated
by integrating the deterministic set of differential equations

˙̃Z = AZ̃ + ζ + (ξTZ̃)Z̃ (25)

Ṗ = FP + PF T + Q (26)
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from time ti to time ti + Δt with initial values Z̃(ti) = Z̃+
ti

and P (ti) = P+
ti

respectively. Here F = F (t, Z̃) denotes the jacobian of (19), evaluated at Z̃, i.e.

F = A + (ξTZ̃)I + Z̃ξT . (27)

In a stochastic setting, the matrices Re and Q in the equations (22) and (26),
represent the covariance matrices of the image and the process noise vectors
respectively. Since we here deal with a purely deterministic system, Re and Q
can instead be considered as design parameters that can be tuned to improve
the estimation process.

4.3 Motion Estimation Refinement by Reprojection Constraints

For simplicity of notation, in this section we let t = ti denote one of the dis-
crete time instants when a new measurement becomes available. Given motion
estimates Rt and bt obtained using the CDEC through (17), the measurement
xt, and the transformed 3-D estimate Z̃−

t from the EKF propagation equation
(25) between times t−Δt and t, we seek correction vectors α, β ∈ R

3×1 of small
magnitude, such that improved motion estimates R+

t and b+
t are given by

R+
t = e�αRt , b+

t = bt + β . (28)

To determine the vectors α and β we intend to utilize a reprojection constraint.
Ideally, this implies that given the true initial 3-D position X0, we would like to
choose α and β such that the corrections (28) result in the true image xt as the
3-D point position at time t is reprojected onto the image plane by (6) according
to

λtxt = R+
t X0 + b+

t . (29)

A workable approximate version of the constraint for use in the current context
can be derived as follows. By (1) we have

X0 = RT
t (Xt − bt) . (30)

Combining this relation with (28) and (29), and expanding the rotation matrix
e�α to the first order in α̂ yields

λtxt = e�αXt + (I − e�α)bt + β ≈ (I + α̂)Xt + α̂bt + β

= Xt + α̂(Xt + bt) + β = Xt − ̂(Xt + bt)α + β .
(31)

Under the assumption of homogenous image coordinates, we have that λt = X3,t.
Further, since in the estimation process we do not have access to the true value for
Xt, we instead use the available estimate X̃−

t , obtained by inverse transformation
of the EKF estimate Z̃−

t , which results in

X̃−
3,txt = X̃−

t − ̂(X̃−
t + bt)α + β , (32)
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where everything except α and β can be considered known. Equation (32) can
also be expressed as

[
̂(X̃−
t + bt) −I

] [
α
β

]
= X̃−

t − X̃−
3,txt . (33)

Dividing through by X̃−
3,t, it is seen that the right hand side of (33) equals the

reprojection error x̃t − xt. Thus (33) constitutes a reprojection constraint on α
and β, and hence on the motion through (28).

It can be shown that for at least three different observed object point esti-
mates, the resulting systems corresponding to (33) will provide six independent
linear constraints on the six unknown parameters in α and β. Thus the desired
correction terms can be determined from the linear system

⎡
⎢⎢⎢⎢⎢⎣

̂(X̃1−
t + bt) −I
̂(X̃2−
t + bt) −I

...
̂(X̃N−
t + bt) −I

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Mrepr

[
α
β

]
=

⎡
⎢⎢⎢⎣

X̃1−
t − X̃1−

3,tx
1
t

X̃2−
t − X̃2−

3,tx
2
t

...
X̃N−

t − X̃N−
3,t xN

t

⎤
⎥⎥⎥⎦ , N ≥ 3 . (34)

It should be noted that (34) is consistent in the sense that if X̃k−
t = Xk

t for
k ∈ {1, 2, . . .N}, the right hand side will become the zero vector and, since Mrepr

has full rank, then also α = β = 0. Hence, according to (28), no correction of
the motion estimates will be made.

As will be exemplified in the simulation section, the inclusion of the repro-
jection constraint correction step significantly enhances the performance of the
estimation procedure, leading to more accurate and robust estimates of both
structure and motion.

4.4 Structure and Motion Algorithm

Using the results of the previous sections, the following algorithm can now be
employed for recursive structure and motion recovery:

1. Preparations

– Assume that images are obtained sequentially at time instants ti,
i = 0, 1, 2 . . ., equally spaced by Δt. Also assume some initial values Z̃−

t1

and P−
t1 for the state vector and the error covariance matrix respectively, as

well as appropriate values for the other EKF tuning parameters.
– Given the images at times t0 = 0 and t1 = Δt with at least eight point

correspondences, get initial parameter estimates w0 and ν0 using e.g. the
continuous eight-point algorithm.

– Compute Rt1 = e�w0Δt and bt1 = ν0Δt.
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2. Estimation loop - for i = 1, 2 . . . do

– Using at least three point correspondences, set up the matching constraint
matrices Mt and mt of (17) at time ti from image points x0, xti , flow vectors
Δxti and the parameter matrices Rti and bti .

– Solve the resulting linear system (17) for the new parameter estimates wti

and νti and update the rotation matrix and the translation vector according
to Rti+Δt = e�wti

ΔtRti and bti+Δt = bti + (νti + ŵtibti)Δt respectively.
– Apply the EKF update step at time ti to get the transformed state estimate

Z̃+
ti

, and the corresponding estimation error covariance matrix P+
ti

from the
equations (22)-(24)

– Using Z̃+
ti

and P+
ti

as local initial values, propagate Z̃(t) and P (t) according
to (25) and (26) over the time interval [ti, ti + Δt], with the parameters wti

and νti

– Recover the 3-D position estimate X̃ from Z̃ on the time interval [ti, ti +Δt]
by inverse transformation.

– Find correction vectors α and β by the reprojection constraint (34), and
compute refined motion estimates according to (28).

Note that since we are estimating both structure and motion, the estimates are
inherently subjected to a scale ambiguity. In the above algorithm the scale issue is
resolved by assuming the translational velocity vector ν to be of unit length in the
initialization procedure. This together with the assumption of normalized image
coordinates fixes the scale for the subsequent parameter estimates through (17).

5 Simulations

Since the initial parameter values obtained by the initialization process generally
can be assumed quite accurate, the truly interesting case will be when one or
both of the parameter vectors w and ν are time varying. The CDEC-based
method can then be evaluated by its ability to follow the time-variations in the
parameters, as well as by its ability to correctly recover the 3-D structure.

For purpose of illustration we simulate the system (2) for eight points in a
general configuration on a grid of stepsize δt = 10−4, and with the parameter
vectors

w(t) =
2
3

(
1, −1, 1

)
, ν(t) =

−1√
1.32

(
1, 0.4, −0.4

)T − 1
2

(
−t, t, sin 4πt

)T
.

Perspective measurements were computed according to (7) at time instants sep-
arated by Δt = 0.01. The true initial values for the three points used throughout
the estimation process were

X1
0 =

(
1.5, 0.5, 1.7

)T
, X2

0 =
(
1, 1.9, 2

)T
, X3

0 =
(
1, 1.2, 2.5

)T
.

The other points were used only in the eight-point algorithm employed in the
initialization step. The estimation process was conducted as outlined in Sect.4.4,
with the initial transformed state estimates
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Fig. 1. Estimation results: (a) True (solid) and estimated (dashed) translational veloc-
ity ν, (b) True (solid) and estimated (dashed) rotational velocity w, (c) 3-D estimation
errors for one of the observed object points

Z̃1
0 =

(
0.5, 0.5, 0.5

)T
, Z̃2

0 =
(
1, 1, 0.5

)T
, Z̃3

0 =
(
1, 1, 1

)T
.

The EKF parameters were set to P0 = 100 · I, Q = 0.1 · I and Re = 0.01 · I, for
unity matrices I of suitable dimensions.

The estimates of the components of the rotational velocity w and the trans-
lational velocity ν together with the true values, are shown in Fig. 1(a) and
Fig. 1(b) respectively. The resulting 3-D estimation error for one of the observed
object points is shown in Fig. 1(c).

To illustrate the fact that the method is able to handle even abrupt changes
in the motion parameters, the same system was again simulated but now with
the time varying term in the expression for ν not turned on until t = 0.3 and
again turned off at t = 0.9. The estimation process was conducted using the
same parameters as before, and the results are shown in Fig. 2.
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Fig. 2. Estimation results for discontinuous motion parameter system: (a) True (solid)
and estimated (dashed) translational velocity ν, (b) True (solid) and estimated
(dashed) rotational velocity w, (c) 3-D estimation errors for one of the observed object
points

To illustrate the effect of the motion estimate correction step described in
Sect. 4.3, the previous experiment was repeated, now without using the repro-
jection constraint. The results are shown in Fig. 3. It can be seen that although
the initial estimate in most cases is smoother, the motion estimation in general
is now less accurate, and the depth estimation exhibits a distinct bias.

6 Conclusion

We have proposed an algorithm for recursive estimation of structure and motion
from perspective measurements in a continuous-discrete setting, utilizing the
novel concept of the continuous-differential epipolar constraint for the estima-
tion of the velocity parameters, combined with a state estimator, here optionally
selected as the continuous-discrete EKF. The structure and motion estimation
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Fig. 3. Estimation results for discontinuous motion parameter system, obtained with-
out using the correction step: (a) True (solid) and estimated (dashed) translational
velocity ν, (b) True (solid) and estimated (dashed) rotational velocity w, (c) 3-D esti-
mation errors for one of the observed object points

processes are connected by recursive feedback of the structure estimates, re-
sulting in reprojection error constraints used to obtain refined motion estimates.
Simulated experiments are included to illustrate the applicability of the concept.

An advantage of the presented method compared to the current state of the
art is that once the algorithm has been initialized, using e.g. the continuous
eight point algorithm, observations of only three object points are needed for
the sequential update and correction of the velocity parameter estimates. Fur-
ther, after initialization, both the parameter update and the correction step are
performed using linear constraints only. A possible drawback of the algorithm
is the use of image flow data, which might cause problems when dealing with
noisy images.

Note that it is not necessary that the same three points are tracked throughout
the whole image sequence. By the rigid body assumption, the motion parameters
are common to all points on the observed object. Hence, the only requirement is
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that three point correspondences are available long enough for the EKF structure
estimator to get past the initial transient phase. Then one or all of the point
correspondences could be replaced by new ones if necessary, and the estimation
process continued, with the appropriate changes made to (15) and consequently
to (17).

Future work includes the investigation of the possibility to construct provably
convergent adaptive structure and motion estimators based on the continuous-
differential matching constraints. Other desirable modifications are extensions
of the algorithm to the uncalibrated case, successful filtering of noisy image
data and the ability to automatically handle outliers and occlusions. As possible
solutions to these issues develop, experiments on real data sequences will be a
natural part of future research.
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Abstract. When a manipulator interacts with objects with poorly
damped oscillatory modes, undesired oscillations and bouncing may re-
sult. In this paper, we present a method for observer-based control of a
rigid manipulator interacting with an environment with linear dynamics.
The controller injects a desired damping into the environment dynam-
ics, using both visual- and force sensing for stable control of the contact
transition. Stability of the system is shown using an observer-based back-
stepping design method, and simulations and experiments are performed
in order to validate the chosen approach.

1 Introduction and Problem Formulation

Contact force control has long been an important research topic in robotics, and
a large number of experimental and industrial implementations and applications
have been presented in the literature [1]. Most of these methods focus on the
robot dynamics, assuming that the environment can be modeled by ideal con-
straints, or as simple mass-less (linear or non-linear) spring-damper systems [2].
Dynamical systems can also be used to model many types of environments and
the energy transfer between the robot and its environment [3], [4]. For efficient
control of such dynamic environments it is necessary to consider not only the
robot dynamics but also the dynamic properties of the environment itself, or oth-
erwise undesirable phenomena such as bouncing may occur. The combination of
vision and force sensing is very powerful, in that it allows us to control interac-
tion with objects whose locations are not initially known, so that impact can be
predicted and controlled in such a way that large impact forces are avoided.

There exist applications where force control in dynamic environments is re-
quired. As an industrial example we have compliant “tool adapters” , which are
mounted between a rigid workpiece and the fixture and serve both as an ex-
tra mechanical compliance and as a force sensor. Cooperating robots is another
example, where one robot may be programmed with a desired compliance, hold-
ing a workpiece on which some operation is to be performed. Other examples
are interaction with non-rigid structures, and loads suspended from cranes. In
non-industrial environments, there are examples such as manipulation of flying,
falling and rolling objects.

R. Vidal, A. Heyden, and Y. Ma (Eds.): WDV 2005/2006, LNCS 4358, pp. 299–313, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In uncertain but static environments, the force/vision control problem is of-
ten solved by assigning each available degree of freedom to a specific task, for
instance by specifying it as either position- or force controlled as in [5]. The
interaction control problem in dynamic environments is in general more chal-
lenging. In [4], dynamic effects such as friction in rigid body- and elastic contact
with passive environments were analyzed, however only the contact phase of the
interaction was considered, thereby avoiding the need for non-contact sensing
such as vision. For interaction with non-stationary objects, for instance, it may
be necessary to introduce feed-forward from the measured target motion during
the approach phase, as in [6] where force/vision control was used for an assembly
operation involving a moving target. In the most general case of interacting sys-
tems, however, the manipulator and environment dynamics are coupled through
the forces of interaction, and feedback from multiple sensor signals may affect
the overall stability and performance of the system in a complex way. As a way
to overcome this difficulty, in [7] the use of vision/impedance control was used
for peg-in-hole insertion experiments in a stationary environment. However, as
the range of achievable impedances is always limited by force sensor noise and
dynamic effects such as gear box- and force sensor elasticity, as well as the pres-
ence of inner position feedback loops, a purely impedance-based approach may
not be sufficient for efficient control in non-stationary environments.

1.1 Problem Formulation

In this paper, we present a method for observer-based control of a system consist-
ing of a rigid manipulator interacting with an environment with linear dynamics,
and demonstrate how vision and force can be used together in order to influ-
ence and control the dynamics of the environment, by active control during both
the approach- and contact phases. An observer-based backstepping procedure is
used to obtain a control law which makes the manipulator/environment system
asymptotically stable. The method is validated in simulations on a model of a
simple three-link serial robot interacting with a mass-spring-damper system, and
in experiments using an industrial robot in contact with a workpiece mounted
on a compliant tool adapter.

2 Modeling of the Robot and Environment

We assume the setup shown in Fig. 1. A rigid robot is in contact with a dynamic
environment, where the interaction is modeled by contact forces in the surface
normal direction at the contact points. The dynamics of a rigid robot can be
modeled by the system

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ − JT
c (q)fc (1)

where fc is the interaction (environment) force given in the chosen force space.
By using a feedback linearizing control law it is possible to obtain a decoupled
system of double integrators from a new command signal u to xc [8]. Assuming
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Fig. 1. Setup with multiple point contacts between robot and environment. Local co-
ordinates (x

(i)
c , y
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c , z
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c ) are attached to the workpiece at each contact point, while the

dynamics of the environment is modeled by a linear mass-spring-damper system.

robot double integrator dynamics with position z3 and velocity z4, and that the
environment dynamics in one direction can be modeled as a stable linear second
order system with position z1 and velocity z2, we can write the coupled dynamics
of the robot and environment as

ż1 = z2 (2)
ż2 = −kz1 − dz2 + Ψ(z3 − z1) (3)
ż3 = z4 (4)
ż4 = u (5)

where the scalar contact force is

fc = Ψ(δ) def= K(δ)δ, (6)

where for convenience we have defined

δ
def= z3 − z1, (7)

and where the contact stiffness K(δ) is assumed to be a differentiable function
of δ, satisfying the properties

K(x) ≥ 0, ∀x (8)
K(x) = 0, x < 0 (9)

|K(x)| ≤ K̄, ∀x (10)
K ′(x)x + K(x) > 0, x > 0 (11)
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The final inequality expresses the condition that the contact force fc = K(δ)δ is
increasing with respect to the deformation distance δ. This also implies that the
inverse Ψ−1(fc) is well-defined when δ > 0. Eq. (6) together with properties (8)–
(11) can be used as an approximate global model for a linear spring mechanism,
or a local model for completely elastic non-linear contact of the type fc = kcδ

n
c

with n > 1 as described in [2].
Although the following section will use the simple model in Eqs. (2)–(5), the

method presented is straightforward to generalize to a larger class of systems,
such as any passive lumped-multiple-mass environment model. In general, the
robot dynamics may be any linear second-order system with relative degree
two, which can always be transformed into a double integrator by a suitable
state feedback. Such a model could, for instance, be used to model a position
controlled manipulator with PD-control.

3 Controller Design

3.1 Full State Feedback

The aim of the controller is to obtain a sufficiently damped impact transi-
tion, which can be achieved by controlling the interaction forces suitably. The
form of the system in Eq. (2)–(5) is similar to the so called strict feedback—
or triangular—form [9]. For such systems, the backstepping design method can
be used to find a control law and a Lyapunov function in a recursive fashion.
Due to the special structure of the passive environment, it makes sense to try
to find a controller that aims to control the energy flow between the robot and
environment such that the environment dynamics is sufficiently damped. If di-
rect control of the interaction force fc was possible, we could introduce extra
damping into the environment by choosing a “virtual” control signal of the form

fc = K(α1(z1, z2) − z1) · (α1(z1, z2) − z1) (12)

with
α1(z1, z2) = z1 + h(z2) (13)

where the damping function h(z2) is twice continuously differentiable and chosen
to satisfy the properties

h(x) ≥ 0, ∀x (14)
h(x) = 0, x > 0 (15)

|dh(x)/dx| < h̄, ∀x (16)

In this way, extra damping is introduced by a suitable dissipation of energy by
application of a contact force in the opposite direction of motion during the
part of the motion when the contact point velocity z2 < 0. This can be seen by
introducing the energy-based Lyapunov function

V1(z1, z2) =
1
2
kz2

1 +
1
2
z2
2 (17)

which gives
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V̇1 = kz1z2 + z2(−kz1 − dz2 + K(δ) (ε3 + h(z2)) =

= −dz2
2 + z2K(δ)h(z2)︸ ︷︷ ︸

def= −W (z2,ε3)≤0

+z2K(δ)ε3 (18)

where the term z2K(δ)h(z2) ≤ 0 introduces extra damping due to properties (8),
(14)–(15), and where

ε3 = z3 − α1(z1, z2) = z3 − z1 − h(z2), (19)

is interpreted as the error between the tool tip position corresponding to the
“virtual” control signal and the true position. We can now write Eq. (3) as

ż2 = −kz1 − dz2 + K(δ)h(z2) + K(δ)ε3
def= f2(z1, z2, ε3) (20)

Furthermore, we have

ε̇3 = z4 − α̇1 = z4 − z2 − h′(z2)f2(z1, z2, ε3) (21)

By augmenting V1 with a quadratic term in ε3, we obtain

V2(z1, z2, ε3) = V1(z1, z2) +
1
2
p3ε

2
3, p3 > 0 (22)

which gives

V̇2 = −W (z2, ε3) + ε3K(δ)z2 + p3ε3 (z4 − α̇1)

= −W (z2, ε3) + p3ε3
(
p−1
3 K(δ)z2 + z4 − α̇1

)
= −W (z2, ε3) − p3k3ε

2
3 + p3ε3ε4 (23)

with k3 > 0 and the new error signal ε4 given by

ε4 = z4 − α̇1 + k3ε3 + p−1
3 K(δ)z2. (24)

Eqs. (21) and (24) give

ε̇3 = z4 − α̇1 = −k3ε3 + ε4 − p−1
3 K(δ)z2

def= f3(z, ε). (25)

Differentiating Eq. (24) gives

ε̇4 = u − α̈1 + k3f3(z, ε)+

+ p−1
3 (K(δ)f2(z1, z2, ε3) + K ′(δ) (f3(z, ε) + h′(z2)f2(z1, z2, ε3)) z2) (26)

with

α̈1 = f2(z, ε3) + h′′(z2)f2(z, ε3)2+
+ h′(z2) (−kz2 − df2(z, ε3) + (K ′(δ)(ε3 + h(z2)) + K(δ)) f3(z, ε)) . (27)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



304 T. Olsson, R. Johansson, and A. Robertsson

By augmenting V2 with a quadratic term in the error ε4

V3(z1, z2, ε3, ε4) = V2(z1, z2, ε3) +
1
2
p4ε

2
4, p4 > 0 (28)

we get

V̇3 = V̇2 + p4ε4ε̇4 = −W (z2, ε3) − k3p3ε
2
3+

+ p4ε4
(
p3p

−1
4 ε3 + u − α̈1 − k2

3ε3 + k3ε4 − k3p
−1
3 K(δ)z2+

+ p−1
3 (K(δ)f2 + K ′(δ) (f3(z, ε) + h′(z2)f2) z2)

)
. (29)

We can now choose the control signal

u = − (k3 + k4)ε4 + α̈1 + k2
3ε3 + k3p

−1
3 K(δ)z2 − p−1

3 (K(δ)f2(z, ε3)+ (30)

+K ′(δ)
(
−k3ε3 + ε4 − p−1

3 K(δ)z2 + h′(z2)f2(z1, z2, ε3)
)
z2

)
with k4 > 0 and obtain

V̇3 = −W (z2, ε3) − k3p3ε
2
3 − k4p4ε

2
4 + p3ε3ε4 (31)

which is negative semidefinite if the free parameter p4 satisfies p4 ≥ p3/(4k3k4).
Asymptotic stability of the origin z1 = z2 = ε3 = ε4 = 0 follows from LaSalle’s
theorem [9], since the largest invariant set in {(z, ε)|V̇3 = 0} is the origin.

3.2 Observer-Based Design

Extension to the case when the environment state is not directly measurable
can be made, assuming that the contact force fc is measurable, and when a
(potentially noisy) position measurement z1 is available from the camera. In
this case, a linear globally exponentially convergent full state observer for the
environment can be constructed as

˙̂z1 = ẑ2 + l1(z1 − ẑ1)
def= f̄1(z1, ẑ) (32)

˙̂z2 = −kẑ1 − dẑ2 + fc + l2(z1 − ẑ1)
def= f̄2(z1, ẑ, fc) (33)

which gives the error dynamics

˙̃z1 = z̃2 − l1z̃1 (34)
˙̃z2 = −kz̃1 − dz̃2 − l2z̃1 (35)

which can be made to converge exponentially to zero by choosing the (possibly
time-varying) observer gains l1 and l2 suitably. By defining

α1(ẑ1, ẑ2) = ẑ1 + h(ẑ2) (36)

and
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ε3 = z3 − α1(ẑ1, ẑ2) = z3 − ẑ1 − h(ẑ2) (37)

we can write Eq. (3) as

ż2 = − kz1 − dz2 + K(δ) (ε3 + h(ẑ2) − z̃1) = −kz1 − dz2 + K(δ)h(z2)+
+ K(δ)ε3 + K(δ) [h(ẑ2) − h(z2)] − K(δ)z̃1 (38)

Using the Lyapunov function V1 of Eq. (17) gives

V̇1 = −W (z2, ε3) + z2K(δ) [h(ẑ2) − h(z2)] − z2K(δ)z̃1︸ ︷︷ ︸
Wzz̃(z,z̃)

+z2K(δ)ε3, (39)

and using V2 in Eq. (22) we find

V̇2 = −W + Wzz̃ + p3ε3
(
p−1
3 K(δ)z2 + z4 − α̇1

)
def= −W − p3k3ε

2
3 + p3ε3ε4 + Wzz̃ + ε3K(δ)z̃2 (40)

where we have defined

ε4 = z4 − α̇1 + k3ε3 + p−1
3 K(δ)ẑ2. (41)

with k3 > 0 and where

ε̇3 = z4 − α̇1 = ε4 − k3ε3 − p−1
3 K(δ)ẑ2

def= f̄3(z, ε, ẑ). (42)

With V3 as in Eq. (28) we obtain

V̇3 = − W (z2, ε3) − p3k3ε
2
3 + Wzz̃(z, z̃) + ε3K(δ)z̃2 + p3ε3ε4 + p4ε4 (u + α2)

(43)

where
α2 = k3 (z4 − α̇1) − α̈1 + p−1

3
d

dt
[K(δ)ẑ2] . (44)

Using the control signal

u = −k4ε4 − α̂2, k4 > 0 (45)

we can rewrite Eq. (43) in the form

V̇3 = − W (z2, ε3) − p3k3ε
2
3 − p4k4ε

2
4 + p3ε3ε4 + Wzz̃(z, z̃)+

+ ε3K(δ)z̃2 + p4ε4(α2 − α̂2) (46)

where the term α̂2 should approximate α2. We choose

α̂2 = k3 (z4 − α̇1) − ˆ̈α1 + p−1
3

(
K(δ)f̄2(z1, ẑ, fc) + K ′(δ)(z4 − ẑ2)ẑ2

)
(47)

where

ˆ̈α1 = h′(ẑ2)
(
−kf̄1 − df̄2 + (K(δ) + K ′(δ) (ε3 + h(ẑ2)))

(
f̄3 + h′(ẑ2)ẑ2

))
+

+ f̄2(z1, ẑ, fc) + h′′(ẑ2)f̄2(z1, ẑ, fc)2. (48)
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With this choice and using (44), (47), (48) and (32)–(35), the error term (α2−α̂2)
in Eq. (46) can be written

α2 − α̂2 = −(l1 + h′(ẑ2)l2)(z̃2 − l1z̃1) − p−1
3 K(δ)z̃2(z2 − z̃2). (49)

Furthermore, since the observer error in Eq. (34)–(35) is exponentially stable,
we can use the Lyapunov function

V4(z1, z2, ε3, ε4, z̃) = V3 + z̃T Pz̃ z̃, z̃ =
[
z̃1 z̃2

]T (50)

which gives

V̇4 = − W (z2, ε3) − p3k3ε
2
3 − p4k4ε

2
4 − z̃T Qz̃z̃ + p3ε3ε4+

+ Wzz̃(z, z̃) + ε3K(δ)z̃2 + p4ε4(α2 − α̂2) (51)

where Qz̃ > 0 is chosen freely and Pz̃ > 0 satisfies the Lyapunov equation

AT
z̃ Pz̃ + Pz̃Az̃ = −Qz̃ (52)

where Az̃ is defined by expressing (34)–(35) as ˙̃z = Az̃ z̃.
The negative semi-definiteness of V̇4 in Eq. (51) could be established as in

the state feedback case in Section 3.1, except for the presence of the last three
extra cross-terms in Eq. (51). Using the properties of K and h(x), and that the
exponential convergence of the observer error gives that

‖z̃2(t)‖ ≤ v̄, ∀t ≥ 0

for some v̄ > 0, the cross-terms can be bounded by

‖Wzz̃(z, z̃)‖ ≤ ‖z2K̄h̄z̃2‖ + ‖z2K̄z̃1‖ (53)
‖ε3K(δ)z̃2‖ ≤ ‖ε3K̄z̃2‖ (54)

‖p4ε4(α2 − α̂2)‖ ≤ ‖ε4p4(h̄l + p−1
3 K̄v̄)z̃2‖+

+ ‖ε4p4h̄ll1z̃1‖ + ‖ε4p4p
−1
3 K̄v̄z2‖ (55)

with h̄l = l1 + h̄l2. By choosing Qz̃ sufficiently large, the cross-terms contain-
ing z̃1 and z̃2 can be dominated by the diagonal terms in V̇4. Straightforward
calculations then show that if p3k3k

2
4 ≥ (K̄v̄)2/(4d) we can make V̇4 negative

semi-definite by choosing p4 = 2k4p
2
3d/(K̄v̄)2. As in Section 3.1, ssymptotic

stability of the origin follows from LaSalle’s theorem [9].

4 Implementation

4.1 Vision-Based Observer

In practice, the observer in Eqs. (32)–(33) should be able to compensate for
positioning errors in all degrees of freedom. To this purpose, a dynamic model
is obtained by extending the system in Eqs. (2)–(3) with a number of static
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Predicted edge

Δyi

Δyi+1

Δyi
(N)

Δyi+1
(N)

Approximation error

Fig. 2. Edge detection in the normal direction of the predicted edges

states xs with ẋs = 0, and interpret z1 in Eq. (32) as the deviation from the
nominal position xs. The extended model with x = (xs, z1, z2)

T is then used in
an observer

˙̂x = Fx̂ + Gfc + Ko(t)J†
p (y − hp(xs, z1)) (56)

where fc is the vector of measured contact forces, and J†
p is the pseudo inverse

of the Jacobian of the projection equation hp for a standard pinhole camera. In
the case of edge measurements, only the distances between the predicted and
real edges in the normal direction of the contour are measurable, and the corre-
sponding equations are obtained by projecting the image space errors onto the
normal as in [10], [11]. Edge positions are found using a robust sub-pixel algo-
rithm which localizes features at three different scales in the image, where visible
features are predicted from frame to frame using a Binary Search Partitioning
tree description of the object.

The observer gain Ko(t) is obtained by using a time-varying Kalman filter.
A multi-rate discrete-time approximation of the Kalman filter is used, where
the dynamics and input forces are sampled at a significantly faster rate than
the camera. It is assumed that the errors in the image measurements εy can
be modeled as Gaussian, spatially uncorrelated white noise with variance σ2, so
that an effective measurement error covariance εx = J†

pεy can be obtained from

E[εxεT
x ] = E[J†

pεy(J†
pεy)T ] = (JT

p Jp)−1σ2 (57)

4.2 Control Law

The controller in Eq. (45) will damp the system by controlling the relative po-
sition of the robot tip and the contact point, which makes sense during the
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approach phase. Once contact has been established, it is necessary to switch to
direct control of the contact force. The control law in Eq. (45) is given by

u = − k4ε4 − k3 (z4 − α̇1) + ˆ̈α1 − p−1
3

d

dt
[K(δ)ẑ2] = − (k3 + k4) (z4 − α̇1)+

+ ˆ̈α1 − k3k4 (z3 − α1) − k4p
−1
3 K(δ)ẑ2 − p−1

3
d

dt
[K(δ)ẑ2] (58)

where the first and second terms on the right hand side of (58) consist of feedback
from the velocity and position errors, respectively, while the third term can
be seen as a compensation of the estimated environment acceleration. We now
replace the position error (z3 − α1) in (58) with the control error ep defined as

ep = θ(Ψ−1(fc))Ψ−1(fc) + θ(ẑ1 − z3) · (z3 − ẑ1) − h(ẑ2) (59)

where θ(x) is the Heaviside step function θ(x) = 1, x ≥ 0, θ(x) = 0, x < 0. This
leads to a switched control law approximating Eq. (45) which incorporates a
proportional feedback from the measured force during the contact phase.

5 Experiments and Simulations

Simulations were carried out on a model of a three-link robot with a single point
contact with the environment, and with contact forces controlled in the vertical

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.05

0

0.05

t[s]

z 1
,z

3[
m

]

Fig. 3. Environment position z1 (dashed line) and robot tool tip position z3 (solid line)
during simulated contact transition with active damping
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Fig. 4. Contact force fc during simulated contact transition and active damping

direction only. The environment dynamics was given by a poorly damped mass-
spring-damper system with mass 10 kg, stiffness 2000 N/m, and linear damping
of 3 N/(m/s). The real contact stiffness K(δ) was set to 10000 N/m for δ > 0. The
damping function h(ẑ2) was composed of piecewise second order polynomials and
chosen to correspond roughly to an additional damping of dactive = 200 N/(m/s)
in order to obtain a critically damped response for small velocities, while h(ẑ2)
saturated at high velocities for a maximum desired contact force of 35 N. An
additional constant term was also added to the control signal in order to obtain
a contact force fc = 15 N in stationarity. The controller parameters were set to
k3 = k4 = 20, p3 = 40000. The Kalman filter was set to track the translation of
the workpiece, a textured cubic box with side 40 cm, from synthetic 640 × 480
pixels camera images rendered in real time using the standard 3D graphics API
OpenGL. In order to analyze the robustness of the system against modeling
errors, a number of extra error sources were added in the simulation:

– The model of K(δ) was a smoothed version of the true stiffness function,
and the modeled elastic stiffness was 100% higher than the true value.

– Additional spatial noise was added to the synthetic images before the feature
extraction step.

– The estimated value of parameter d in the controller was 100% higher than
the true value, while the stiffness k was assumed to be known.

– The camera data and the observer were sampled at 40 ms, while the force
signal sampling and the damping control law were executed at a shorter
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period of 4 ms. A time delay of 40 ms for image capture and processing was
added for the camera data, and modeled in the Kalman filter.

For the motion control in the unconstrained directions a standard computed
torque controller was used, with feed-forward from the estimated environment po-
sition.The environment oscillationmodewas excited, and at time t = 2 s the damp-
ing controller was started. Fig. 3 shows the resulting robot- and environment po-
sitions, while Fig. 4 shows the resulting contact force. The limiting of the contact
force just below the desired value of 35 N can be seen at t = 2.4 s, the reason why
the desired critically damped dynamics not being achieved initially.

5.1 Experimental Results

Experiments were performed using an ABB Irb 2400 industrial robot with a 250
Hz controller interface for fast feedback control using external sensors. The local
dynamics in one degree of freedom were approximated by a second-order linear
system and used in the controller design. Contact forces were measured using a
JR3 force/torque sensor, while images of the environment were captured using
a Basler 602fc IEEE-1394 digital camera with VGA resolution, using a 33 ms
sample time. The 16 kg workpiece was mounted on a compliant tool adapter
with a stiffness of 20 kN/m, giving a resonance frequency of 5.5 Hz.

The experiments were carried out using a controlled designed for critical
damping of the oscillations of the environment, and compared to the results
of using a internal-position impedance controller without explicit damping ac-
tion of the environment modes. In Fig. 6, showing the measured motion in the

Fig. 5. Image of the compliant environment, with some of the features used for mea-
surement of the deflection of the compliant tool in a single degree of freedom
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Fig. 6. Environment position with (solid line) and without (dashed line) damping con-
trol action
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Fig. 7. Robot TCP position with (solid line) and without (dashed line) damping control
action
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camera, the resulting improvement of the damping is clearly seen. Fig. 7 shows
the robot TCP position during the same experiment, where the damping motion
of the tool tip can be clearly seen.

6 Discussion

The active control works well both in simulation and in experiments, including
robustness to uncertainties in the model parameters k, d and K(δ). The resulting
controller has a relatively simple structure, as seen from Eqs. (58) and (59).
Different choices of the damping function h(x) will give different properties of
the system. In practice, it is often possible and beneficial to choose a damping
function that violates property (15), especially in order to obtain a sufficient
damping for oscillations with small amplitude.

The role of the force sensor is twofold. Firstly, it is used to stiffen the con-
trolled robot by force feed-forward, secondly to measure the current contact
force for feedback. In order to perform force feed-forward, the assumption of a
rigid manipulator restricts the method to environments which are significantly
more compliant than the manipulator itself, or where the effective inertia of the
robot is so large that the effect of interaction force can be ignored. Additionally,
for very high contact stiffness between the robot and environment large contact
forces can build up quickly, especially during the transition phase, meaning that
additional physical compliance or padding may be necessary in order to decrease
the contact stiffness. In the experiments, a thin layer of soft rubber was attached
at the contact points of the environment.

7 Conclusions

In this paper, we have presented a method for vision/force-feedback control
of a system consisting of a rigid manipulator interacting with an environment
with linear dynamics. An observer-based backstepping control approach was
used to find a controller that injects a desired damping into the dynamics of
the environment, using both visual feedback and force sensing. Simulations and
experiments were used to validate the approach. The choice of the controller
parameters and damping function gives a considerable design flexibility, which
can for instance be used to design damping controllers that attempt to limit the
applied interaction force.
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Abstract. This paper presents an endoscopic vision framework for
model-based 3D guidance of surgical instruments used in robotized la-
paroscopic surgery. In order to develop such a system, a variety of chal-
lenging segmentation, tracking and reconstruction problems must be
solved. With this minimally invasive surgical technique, every single in-
strument has to pass through an insertion point in the abdominal wall
and is mounted on the end-effector of a surgical robot which can be con-
trolled by automatic visual feedback. The motion of any laparoscopic
instrument is then constrained and the goal of the automated task is to
safety bring instruments at desired locations while avoiding undesirable
contact with internal organs. For this ”eye-to-hands” configuration with
a stationary camera, most control strategies require the knowledge of the
out-of-field of view insertion points location and we demonstrate it can
be achieved in vivo thanks to a sequence of (instrument) motions with-
out markers and without the need of an external measurement device. In
so doing, we firstly present a real-time region-based color segmentation
which integrates this motion constraint to initiate the search for region
seeds. Secondly, a novel pose algorithm for the wide class of cylindrical-
shaped instruments is developed which can handle partial occlusions as
it is often the case in the abdominal cavity. The foreseen application is
a good training ground to evaluate the robustness of segmentation algo-
rithms and positioning techniques since main difficulties came from the
scene understanding and its dynamical variations. Experiments in the lab
and in real surgical conditions have been conducted. The experimental
validation is demonstrated through the 3D positioning of instruments’
axes (4 DOFs) which must lead to motionless insertion points disturbed
by the breathing motion.

1 Introduction

One may observe since few years a growing spectrum of computer vision applica-
tions to surgery, particularly to intra-operative guidance [1,2]. On the one hand
computer vision techniques bring a lot of improvements and gain in reliability
in the use of visual information, on the other hand medical robots provide a
significant help in surgery, particularly for the minimally invasive surgery, as it
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is for the laparoscopic surgery. Minimally invasive surgery is a very attractive
technique since it provides position accuracy, it avoids surgical opening and then
it reduces the recovery time for the patient. In counterpart, motions of surgical
instruments are constrained to by the insertion point locations in the abdominal
wall, reducing the dexterity since only four degrees of freedom are available.

Our research in this field aims at expanding the potentialities of such robotic
systems by developping visual tracking and servoing techniques to realize semi-
autonomous tasks [3,4]. Endoscopic vision systems are used for that purpose,
however many obstacles remain to be overcome to achieve an accurate position-
ing of laparoscopic instruments inside the abdominal cavity by visual feedback.
Many difficulties are emanating from the scene understanding, the time-varying
lighting conditions, the presence of specularities and bloodstained parts, and a
non-uniform and moving background due to patient breathing and heart beat-
ing. But, for this ”eye-to-hands” robotic vision system, one of the most tricky
problem is the unknown relative position/orientation of robot arms holding the
instruments w.r.t. the camera frame [3]. This transformation mainly depends
on the insertion points location which must be recovered to express the relative
velocity screw in the appropriate frame.

The outline of the paper is as follows. In the next section, we review some ex-
isting endoscopic vision systems used in robotized laparoscopy. In section three,
we describe the fast region-based color segmentation of surgical instruments. We
present the laparoscopic kinematic constraint together with the 3D pose estima-
tion of surgical instruments in section four. Throughout the paper, results are
provided and a conclusion is given in section five.

2 Related Work on Vision-Based Robotic Guidance for
Minimally Invasive Abdominal Surgery

Prior researches have been conducted to process laparoscopic images for the de-
velopment of 3D navigation systems in the human body. One of the pioneered
work was that of Casals et al. [5] which used a TV camera microoptics mounted
on a 4 DOFs industrial robot (with 2 passive joints) to realize a 2D tracking of
a surgical instrument with markers. Projections of markers were approximated
by straight lines in the image segmentation process and the tracking task was to
keep the imaged markers close to the image center. This guidance system worked
at a sampling rate of 5 Hz with the aid of an assistant. Wei et al. [1] have used
a stereoscopic laparoscope mounted on a robot arm and have designed a color
marker to realize a tracking task. By means of a color histogram, the color bin
with the lowest value is selected to mark the instrument. This spectral mark
was then utilized to control the robot motion at a sampling rate of 15 Hz. An
interesting feature of the proposed technique is the choice of HSV color space for
segmentation, leading to a good robustness with respect to lighting variations.
Wang et al. [6] have proposed to enhance laparoscope manoeuvering capabilities.
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In so doing, they have conceived a general framework that uses visual mod-
elling and servoing methods to assist the surgeon in manipulating a laparoscope
mounted on a robot end-effector. Color signatures are used in a Bayesian classi-
fier to segment endoscopic images into two classes (organ and markerless instru-
ment). Finally, this framework has been applied to the instrument localization
(the 2D position of the imaged tip of instrument) and 2D tracking with 3 DOFs
of the AESOP robot in a way to follow the laparoscope. Like for the two previous
related works, it’s a visual tracking system with active vision guidance in order
to keep the instrument close to the image center, that is there is no need to the
estimate of the 3D motion of the instrument.

For these related works, it is assumed that the endoscopic camera is mounted
on a robot (eye-in-hand). Other more recent works are rather related to the
tracking of free-hand or robotized instruments with respect to the internal or-
gans with the aid of a stationary camera. Hayashibe et al. [7] have designed
an active scanning system with structured lighting for the reconstruction of 3D
intraoperative local geometry of pointed organs. With a 2D galvano scanner and
two cameras (one of the two is a high speed one), a real-time registration of the
scene of interest is performed via the triangulation principle in order to alleviate
the surgeon to mentally estimating the depth. An external device equipped with
leds (the Optotrak system from Northern Digital Inc.) was used to calibrate the
laser and the cameras coordinate frames. The authors have reported a total mea-
suring time of 0.5 s to provide the 3D geometry of the liver under laparoscopic
surgery conditions and have realized non-master-slave operation for the AESOP
surgical robot guided by the surgeon.

A robot vision system that automatically positions a single laparoscopic in-
strument with a stationary camera is described by Krupa et al. [3]. Laser pointers
are designed to emit markers on the organ. A visual servoing algorithm is car-
ried out to position a marked instrument by combining pixel coordinates of the
laser spots and the estimated distance between the pointed organ surface and
the tip of the instrument thanks to the projective invariance of the cross-ratio.
Successful experiments using this system were done on living pigs. In this work,
3 DOFs of the instrument were tracked (pan/tilt/penetration depth) thanks
to a two-stage visual servoing scheme that partly decouple the control of the
pointed direction (given in the image) and the control of the depth. It is worth
noticing that a on-line identification of the Jacobian matrix for pan/tilt control
(first stage) was realized with appropriate robot joint motions to directly get
expressions of the velocity screw components in the instrument frame. At the
Center for Computer Integrated Surgical Systems and Technology (CISST), sev-
eral techniques for assisting surgeons in manipulating the 3D space within the
human body have been developed not only for the abdominal cavity but also
for eye, sinus and thoracic surgery. Some of them involve (mono- and stereo-)
vision-based robot control and articulated instruments [2] and in order to obtain
the robot(fixed frame)-to-camera transformation, the Optrotrak system is used
in a preliminary setup. Burschka et al. have noticed an offset of approximately
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5 mm (compared to the stereovision tracking) which is due to an error in the
cameras-Optotrak calibration because of the difficulty of segmenting led centers.

Our objectives are to bring solutions of the previously mentioned problems
in this complex environment including dynamical changes, with landmark-free
approaches. No previous work is directly related to the 3D location recovery
of insertion points with respect to the endoscopic camera. However, some solu-
tions have been provided by Krupa et al. [3] and also by Ortmaier et al. [8] but
with respect to the robot frame, which inherently introduces errors of the ro-
bot model. Moreover, these methods need markers on the instruments. Robotic
tasks may require interactions with tissues, instruments must be autoclavable
before a surgical operation and since several one may alternatively be used (de-
pending on the subtask addressed), it is not convenient to always use artificial
landmarks placed on endoscopic tools. In this paper, techniques related to image
processing and computer vision have been specially designed so as to be dedi-
cated to the interpretation of visual data coming from the abdominal cavity for
robotic purposes. In particular, we investigate the on-line localization recovery
of the out-of-field of view insertion points in the abdominal wall which is useful
for image regions classification and for the temporal consistency of instruments
motion.

3 Segmentation Inside the Abdominal Cavity

For applications involving robots, image segmentation as well as classification
and recognition must be fast and fully automatized. Moreover, since we deal
with color images, it’s suitable to analyze the multispectral aspect of the in-
formation to identify regions of interest. In laparoscopic surgery, many surgical
instruments have cylindrical metallic parts leading to grey regions with many
specularities in the image. In [9], the detection of a single laparoscopic instrument
has achieved by means of the Hough transform but it requires the knowledge of
the 3D position of insertion point while in Doignon et al. [10], we addressed the
detection of boundaries of grey regions in color endoscopic images accounting
for laparoscopic instruments. It was based on a recursive thresholding of his-
tograms of color purity attribute S (saturation) and it works at half the video
rate. The color image segmentation we designed here is based on chromatic HS
(Hue-Saturation) color attributes when HSI is chosen as the color space repre-
sentation. The joint color feature H = S H from which the first derivative is
closely related to the shadow-shading-specular quasi-invariant |Hc

x| = S ·Hx [11]
seems to be an appropriate discriminant cue and is shown in Fig. 1 (right)).
Hx denotes the spatial differentiation of hue H (a change of H may also oc-
cur with a change of the color purity S). A well-known drawback of hue is its
undefinedness for achromatic pixels, i.e., for small S and small changes round
the grey axis result in large changes of the direction of that quasi-invariant and
therefore the derivative of hue is unbounded. However, van de Weijer et al [11]
have shown that the norm of Hc

x remains bounded. It follows that its integral is
also bounded, and hence, H is bounded. As noticed by van de Weijer et al, the
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Fig. 1. The results of the region-based color (hue-saturation) segmentation for frames
74 (the 4 top images) and 578 (bottom). In right, the H (filtered) images and the
selected (coloured) image regions. The apparent contour of instruments is delineated
with a pair of straight lines (in green).

discriminance of this quasi-invariant of photometric color feature is efficient and
suitable to deal with specularities. To get out an oversegmentation, a fast Sigma
filter algorithm has been performed on the H image. This is a non-linear filtering
which has the capability to either smooth pixel attributes inside region and to
equally preserve the topological properties of edges. Results are very similar to
the well-known anisotropic diffusion process [12]. However, it is very fast and in
[13], we have presented the real-time implementation of this filtering.

We have followed a region-based segmentation approach, and, since any instru-
ment is constrained to pass through the insertion point, the automatic detection
of seeds to initiate the region growing process is reduced to a one-dimensional
search of low H values along the image boundaries. Once regions have been
segmented, the region boundaries are ordered and used to perform a robust
two-class line fitting. It first consists in a contour classification algorithm which
determines the farthest edge from the seed in the list of boundaries as a dis-
criminant class separator. Then, a least-median of squares method is carried out
to each class for modelling the apparent contour with a pair of line parameters,
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l+ and l−, or to reject the region if the euclidean distance between pixels and
corresponding line is too large (see for example the red and lightblue labeled
regions in Fig. 1). Nevertheless, it is yet possible that a region which does not
correspond to an instrument may be selected with this method. Then, we will
see in the next section how the motion constraint can help to solve this problem.

4 Model-Based Pose Approach with Motion Constraint

The aim of this section is to formalize the motion constraint. First of all, a scene
structure from motion approach is developed to get the location of the insertion
points. For this purpose, a two-step algorithm with closed-form solution of the
pose parameters is presented.

4.1 The Motion Constraint in Minimally Invasive Surgery

As previously mentioned, any laparoscopic instrument is constrained to pass
through the incision point. Usually, the structure of the scene from motion in-
volves multiple views and the well-known factorization method exploits geomet-
ric constraints between views acquired by one or several cameras, in motion
(e.g. see [14,15,16,17]). In opposite, the main feature of the multiview approach
presented here is that it properly exploits existing motion constraints of the ro-
botized instruments observed by a stationary camera.

At a first approximation, let consider the patient breathing being no impact
on the abdominal wall deformation, that is any insertion point is assumed to be
motionless. We denote with (Rc) = (C,xc,yc, zc) the reference frame attached to
the camera with projection centre C, (RI) = (OI ,xI ,yI , zI) the reference frame
attached to a laparoscopic instrument with an arbitrary origin OI . Without loss
of generality, we assume vector zI with the same orientation as the instrument
axis. The small incision area in the abdominal wall for an instrument is repre-
sented with a geometrical point I and that of the endoscope with the geometrical
point E. Under these assumptions and with these notations, the position vector
EI is constant, and for a stationary camera, vector CI is also constant. If the
position and orientation of the intrument frame (RI) are respectively the vector
t and the rotation matrix R = (r1, r2, r3) expressed in the camera frame (Rc), it
comes:

CI = t + R OII = t + λ R
[
0 0 1

]T = t + λ r3 , λ ∈ R (1)

Since most instruments exhibit a surface of revolution (SOR), with few excep-
tions, the attitude of the axis of revolution may conveniently be represented with
the Plücker coordinates as it is for any 3D straight line. Plücker coordinates are
a couple of algebraically dependent vectors (v, w) such that w = v × t. They
may alternatively be gathered in the following matrix L or its dual L�:

L =
[

[w]× −v
vT 0

]
, L� =

[
[v]× −w
wT 0

]
. (2)
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This is a suitable representation since one may easily deal with geometrical
transformations [18] including the perspective projection [19]. This (4 × 4) ma-
trix is defined up to a scale, skew-symmetric, singular and the rank value (2) is
expressing the orthogonality constraint between the two vectors v and w. With
this representation, the laparoscopic kinematic constraint may be expressed for
v = r3 as the common intersection of multiple convergent lines. Since any (ho-
mogeneous) point X is on L if L�X = 0, given n displacements {D1,D2,...,Dn}
corresponding to the set of dual Plücker matrices {L�

1, L
�
2, ..., L

�
n}, a unique inter-

section of lines is obtained with a rank-3 (4n × 4) matrix GT
n such that

Gn = [L�
1, L

�
2, ..., L

�
n] . (3)

That is, the null-space of GT
n must be a one-dimensional subspace and the inter-

section may be computed with n (n ≥ 2) 3D displacements of the instrument.
By computing the SVD of GT

n, one obtains the common intersection by taking
the singular vector associated with the null singular value (or the smallest one
in presence of noisy data). The sign ambiguity of the solution is dispelled as the
only valid one is corresponding to an intersection I = (Ix, Iy, Iz) occuring in
front of the camera (Iz > 0).

The perspective projection of the 3D line Lj is the image line lj defined by

[lj ]× = KcPc Lj (KcPc)T = [(Kc)−T wj ]× (4)

where Kc is the matrix of camera parameters, Pc is the (3× 4) projection matrix
and [l]× is the skew-symmetric matrix of vector l. Since the intersection is pre-
served by projective transformation, the n corresponding convergent image lines
l1, l2, ..., ln must satisfy

(
l1 l2 . . . ln

)T
i =

(
w1 w2 . . . wn

)T

︸ ︷︷ ︸
Wn

(Kc)−1 i = 0 (5)

where i is the image of the insertion point I. It follows that a set of n 3D straight
lines is projecting to n convergent image lines if the above (n × 3) matrix Wn is
of rank 2. It’s only a necessary condition which does not ensure the convergence
of the 3D lines, but which makes so important the accurate estimation of the
imaged axis of revolution (any line lj) which requires the recovery of the Plücker
coordinates presented in the next paragraph. Once the pose estimation is done
with the measurements (l−p , l+p )) of a putative image region p, the following
criterion is used as a discriminant classification parameter

min
j

|lTp ij | < τ , for j = 1, ..., m (6)

to attach the region to one of the m insertion points, otherwise it is rejected.

4.2 Pose Computation of a Right Circular Cylinder

We present a novel algorithm for the pose estimation of a cylinder. As a close
related work, Wong et al. [20] exploit the invariance of surfaces of revolution
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(SOR) to harmonic homology and have proposed an algorithm which is able to
recover the orientation and the depth (or the focal length of the lens) while an
image rectification is performed to coincide the imaged revolution axis of a SOR
with one image axis and when the image of a latitude circle is available (assuming
that the principal point is located at the image center and that the camera
has unit aspect ratio) from the resulting silhouette which exhibits a bilateral
symmetry after a rectification which brings the revolution axis to coincide with
one image axis. With this method, an initial guess of the imaged symmetry
axis is found by numerical minimization of a cost function. and if the image
of a latitude circle in the SOR is also available, the depth can be estimated.
The method we propose here is especially designed for cylindrical objects. It’s
a direct method (all components are computed in one stage), it does not need
any image transformation and no latitude circle, hence it can deal with partial
occlusion of the apparent contour as it is for this application area.

Given the matrix Kc, the cylinder radius rc and the image of its contour
generator (the apparent contour), we look for the determination of the Plücker
coordinates (r,w) of the cylinder’s rotation axis satisfying the non-linear equa-
tion rTw = 0. It can be easily shown (from [21]) that the apparent contour is a
set of two straight lines represented with the pair of vectors l− and l+ satisfying

(l−)T m ≡ {(Kc)−T (I − α[r]×) w}T m = 0
(l+)T m ≡ {(Kc)−T (I + α[r]×) w}T m = 0 , (7)

for any point m lying on the apparent contour and α = rc/
√

‖w‖2 − r2
c .

To compute the pose parameters, we define the three vectors y = α[r]× w,
ρ− = Kc l− and ρ+ = Kc l+. With these notations, (7) can be written as follows

μ1 ρ− = w − y ; μ2 ρ+ = w + y (8)

where μ1 and μ2 are two non-null scale factors. Vectors y and w are algebraically
dependent (but not linearly) since they satisfy yTw = 0 and ‖y‖ = |α| ‖w‖.
The latter one is developed so as to take into account the expression for α

r2
c (‖w‖2 + ‖y‖2) = ‖w‖2 ‖y‖2 (9)

To summarize, what we have to do is to solve the following homogeneous
deficient-rank system

[
−I I − ρ− 0
I I 0 −ρ+

] ⎡
⎢⎢⎣

y
w
μ1
μ2

⎤
⎥⎥⎦ = A6×8 x = 0 (10)

for the unkwown vector x = (yT,wT, μ1, μ2)T, subject to yTw = 0 and (9). Since
A6×8 has a rank equal to 6, the SVD U6×8 D (v1, · · · ,v8)T has two null singular
values and the null-space of A6×8 is spanned by the right singular vectors v7 and
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Fig. 2. Results of the pose for two frames picked up from the sequence. Blue curves
are the perspective projections of the contour generator of the cylindrical-shaped in-
strument with the estimated pose, whereas blue ones are those corresponding to the
two-class fitting of the apparent contour. (right) magnification of left images.

v8 and provides a 2-parameter family of solutions as a linear combination of the
two last columns of V as

x = λ v7 + τ v8 , for λ, τ ∈ R. (11)

The second step consists in the introduction of non-linear constraints. Substi-
tuting y = (x1, x2, x3)T and w = (x4, x5, x6)T from (11) in yT w = 0 gives the
following homogeneous quadratic equation in λ and τ

a1 λ2 + a2 λτ + a3 τ2 = 0 (12)

where ai are scalar functions of v7 and v8. Two real solutions for s = τ/λ, s−

and s+, can be computed from (12). Then, reporting these solutions in (9) with
substitutions from (11) gives an homogeneous quadratic equation in τ2:

c1(s) τ2 + c2(s) τ4 = 0 (13)

and the solutions are τ = 0 (double) and τ = ±
√

− c1(s)
c2(s)

. The two null solu-

tions for τ are those corresponding to the trivial solution x = 0 since yT w = 0
and (9) are both satisfied with null vectors. Moreover, the sign of the non-null
solutions for τ can not be determined since both x and −x are solutions. As one
can notice, since τ = s λ with s− = −1/s+, the solution for the pair of vectors
(y,w) with s+ is also the solution for the pair of vectors (−w, −y) with s−.

4.3 Experimental Results

Results concerning the pose are shown (sketched) in Fig. 2. In this figure, blue
curves are the perspective projections of the contour generator of the cylindrical-
shaped instrument with the estimated pose, whereas blue ones are those corre-
sponding to the two-class fitting of the apparent contour. With the proposed
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Fig. 3. (a) Image of the laparoscope with blue markers. (b-f) Comparison of the
markers-based Haralick’s method and the method based on apparent contours of a right
circular cylinder for the 4 DOFs: angles (b-d) and orthogonal distances (e). Whereas
the orientation of the cylinder should be equal with and without markers, the norm of
the vector w − wh must be equal to the radius of the cylinder rc = 5 mm (f).

method, the curves should be perfectly superimposed, however the small resid-
ual error (1.2 pixels in average) is probably due to a mis-identification of lens
distortion parameters. A cylindrical laparoscope with blue markers sticked on
its surface has been used for primary experiments. Centroids of these markers
are such that we get a set of 5 collinear object points in the axis direction. A
set of endoscopic images has been captured with 30 viewpoints (see Fig. 3-a).
With this equipment, we have compared the pose computation from apparent
contours of the cylinder (r,w) with the proposed method and the Haralick’s
method for the pose of a set of collinear points [22]. The latter method deter-
mines the orientation rh of the straight line supporting the points as well as a
position vector th (given the interpoint distances and an arbitrary origin for the
points reference). We then compute the following cross-product wh = rh × th

to get the Plücker coordinates. Due to the relative position of these markers
w.r.t. the cylinder axis, vectors r and rh should coincide whereas the Euclidean
norm of vector δw = w − wh should be equal to the cylinder radius rc = 5 mm
whatever is the camera viewpoint. This experimental validation is depicted in
Fig. 3-b:c for the orientation (angles φ and ψ) of the rotation axis, in Fig. 3-d
for the inclination of the interpretation plane w.r.t. to the optical axis (angle θ)
and in Fig. 3-e for the orthogonal distances w.r.t. camera centre. The results
show a good agreement and consistency for the orientation of the instrument
axis. However, results about relative distance error are not as good as expected.
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Fig. 4. Experiments in the lab to validate the proposed method. (a-c) Three endo-
scopic images with the segmentation of a single surgical instrument. The image lines
resulting from the two-class fitting of the apparent contours are drawn in green. (d)
A training box is used together with the endoscope fixed onto a monoCCD camera.
The instrument is mounted onto the end-effector of the AESOP3000 surgical robot.
(e) Temporal variations of i1 coordinates in the image plane while moving the sur-
gical instrument in front of the camera. (f) The dual parameter space of convergent
lines (θ, ρ) (imaged instrument axis), ”points” (blue bullet) must be collinear with a
perfectly motionless insertion point.

This error is 3.1 % in average, but for several viewpoints, there are significant
differences (up to 7.6 %) between ‖w − wh‖ and the cylinder radius (Fig. 3-f).
With a training box at the lab and a motionless insertion point (I1) , displace-
ments and pose estimation of a surgical instrument has carried out (see Fig. 4)
with the AESOP surgical robot. During the guidance of the instrument, we no-
ticed some small temporal variations of the image (i1) of the insertion point due
to error in the overall segmentation (Fig. 4-e) and pose estimation. In Fig. 4-f,
we have reported the dual parameter space of convergent lines (distance from
the origin versus angle of line direction), since a unique intersection of lines must
lead to perfectly collinear points (blue bullets).

We have depicted in Fig. 5-a the experimental setup used in the operating
room and we have also reported the first two coordinates of the first insertion
point I1 = (304; 88; 224) found with the proposed method in Fig. 5-b. The pre-
cision of the imaged point i1 = (157.5; 154.2) (Fig. 5-c) is given by the standard
deviations which are σu = 10.4 and σv = 1.2 pixels respectively in the horizontal
and vertical directions, and with 52 images (about 2 s). Results exhibit a sig-
nificantly better precision found in the vertical direction. This can be explained
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Fig. 5. (a) The Aesop surgical robot in the operating room. Trocars are inserted to
incision points to guide the laparoscopic instruments or to hold the stationary camera.
(b) The (Ix, Iy) coordinates of the convergent point I1 during the guidance of an
instrument. (c) Temporal variations of the perspective projection of I1 (i1) as the
intersection of imaged symmetric axes l for a sequence of 52 images.
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Fig. 6. (a) The convergent imaged symmetric axes and the estimated image of the
insertion point i1 at (593.4; 105.5) (black cross) computed with the least mean squares
during the guidance of an instrument. (b) In the dual parameter space of convergent
lines (θ, ρ), ”points” (blue bullet) must be collinear. (c) The estimated image of the
insertion point i1 at (615.5; 103.9) (black cross) and the parameter space (d) with the
robust estimation when 50 % of data (outliers) are rejected.

either by the breathing motion or by a no sufficient spread of orientation motions
in one direction while the robot is guiding the instrument. Another experimenta-
tion has been done to validate the convergence of the imaged instrument axes of
cylindrical instruments. Fig. 6 shows the location of the insertion point location
in the image with the least mean square method (Fig. 6-a:b) and with a robust
(least median of squares) estimation method (Fig. 6-c:d). The latter method is
able to cope with outliers, that is it keep only the salient endoscopic views with
the more accurate 3D pose estimations.

5 Conclusion

In this paper, we have tackled a set of problems to solve for the 3D guidance of
surgical instruments in minimally invasive surgery inside the abdomen. For this
complex environment with dynamical changes, we have presented the automatic
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detection and positioning of cylindrical-shaped objects with endoscopic views of
the human body and we have brought some solutions especially in the context
of the robotized laparoscopic surgery. Then, in the first part of the paper, we
briefly present a fast segmentation of grey regions and, in the second part, the
3D pose and constrained motion of surgical instruments is described with de-
tails. With this article, we have addressed some issues with a non-uniform and
moving background with time-varying lighting conditions, offer some generic
and context-based solutions with landmark-free approaches. The representation
of the instrument axis motion with the Plücker coordinates (4 DOFs) has been
shown to be suited to deal with partial occlusions and also for the decoupling of
the pan/tilt control, the penetration depth and the rotation axis of instruments.
This is an important practical contribution for the achievement of vision-based
semi-autonomous tasks with robots in minimally invasive surgery. In particu-
lar, the on-line localization of out-of-field of view insertion points (and their
images) is an important issue to drive the image segmentation, the regions se-
lection process and finally to improve the reliability while tracking the surgical
instruments.
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Pérez, Patrick 190
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